ARTICLE IN PRESS

J. Math. Anal. Appl. ••• (••••) •••-•••

Journal of Mathematical Analysis and Applications

Contents lists available at ScienceDirect

YJMAA:22318

www.elsevier.com/locate/jmaa

Multinormed semifinite von Neumann algebras, unbounded operators and conditional expectations

Anar Dosi

Middle East Technical University Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey

ARTICLE INFO

Article history: Received 29 January 2018 Available online xxxx Submitted by M. Mathieu

Keywords: Multinormed W^* -algebra Unbounded operators Central topology ℓ_1 -normed space

ABSTRACT

The present paper is devoted to classification of multinormed W^* -algebras in terms of their bounded parts. We obtain a precise description of the bornological predual of a multinormed W^* -algebra, which is reduced to a multinormed noncommutative L^1 -space in the semifinite case. A multinormed noncommutative L^2 -space is obtained as the union space of a commutative domain in a semifinite von Neumann algebra. Multinormed W^* algebras of type I are described as locally bounded decomposable (unbounded) operators associated with a measurable covering. © 2018 Elsevier Inc. All rights reserved.

1. Introduction

The projective limits of von Neumann algebras with their normal connecting homomorphisms (called normal projective limits) play a key role in many problems of noncommutative probability theory, quantum groups and noncommutative geometry. Noncommutative Sobolev spaces are defined in [20] by M. Mizuo as the inverse limits of von Neumann algebras generated by a semicircular system based on the viewpoints of noncommutative topology and noncommutative probability theory. A possible candidate for the algebra $L^{\infty}(\mathbb{S}_{\infty})$ over the quantum semigroup \mathbb{S}_{∞} of all quantum permutations of a countable set was suggested in [14] by D. Goswami and A. Skalski to be a projective limit of the enveloping von Neumann algebras of the C^* -algebras $C(\mathbb{S}_n)$ of quantum permutations of n elements. The algebra (actually module) of noncommutative martingales turns out to be a projective limit of an increasing family of von Neumann algebras whose connecting maps are conditional expectations [27]. In the same framework the space of martingales is defined as inverse limit of the Gelfand–Tsetlin algebras GZ_n which are invariant under the given conditional expectations [27]. The normal projective limits of von Neumann algebras named as multinormed W^* -algebras in [10] were investigated first in [12] by M. Fragoulopoulou (see also [19]). The representation theorem from [12] (see also [10]) asserts that each multinormed W^* -algebra is topologically *-isomorphic to

E-mail address: dosiev@yahoo.com.

URL: http://webwork.ncc.metu.edu.tr/members/dosi.php.

 $\label{eq:https://doi.org/10.1016/j.jmaa.2018.06.002} 0022-247X/\odot$ 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: A. Dosi, Multinormed semifinite von Neumann algebras, unbounded operators and conditional expectations, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.06.002

 $\mathbf{2}$

ARTICLE IN PRESS

A. Dosi / J. Math. Anal. Appl. ••• (••••) •••-••

a strongly closed *-subalgebra of the O*-algebra $C^*_{\mathcal{E}}(\mathcal{D})$ of all noncommutative continuous functions on a domain \mathcal{E} with its union space \mathcal{D} .

Recall that an O^{*}-algebra (see [23]) is treated as a unital *-algebra A of linear transformations on a common dense subspace \mathcal{D} of a Hilbert space H which leaves invariant \mathcal{D} . Each $a \in A$ as an unbounded operator on H admits unbounded dual a^{\star} which leaves invariant \mathcal{D} , therefore $a^* = a^{\star} | \mathcal{D} \in A$ and the correspondence $a \mapsto a^*$ turns out to be a natural involution on A. A domain \mathcal{E} in H with its union space \mathcal{D} is defined as an upward filtered family of commuting projections \mathcal{E} in $\mathcal{B}(H)$ such that $\forall \mathcal{E} = 1$ and $\mathcal{D} = \bigcup \mathcal{E}(H)$, where $\forall \mathcal{E}$ is the least upper bound in $\mathcal{B}(H)$ of the projection net. The multinormed W^* -algebra $C^*_{\mathcal{E}}(\mathcal{D})$ of all noncommutative continuous functions on a domain \mathcal{E} is defined as the O*-algebra of those linear transformations x on \mathcal{D} such that $ex \subseteq xe$ and $xe \in \mathcal{B}(H)$ for all $e \in \mathcal{E}$ (see [5], [6], [8] and [1]). The family of C^{*}-seminorms $||x||_e = ||xe||, x \in C^*_{\mathcal{E}}(\mathcal{D}), e \in \mathcal{E}$ defines the original polynormed (or locally convex) topology of $C^*_{\mathcal{E}}(\mathcal{D})$, whereas the seminorms $p_{\zeta,\eta}(x) = |(x\zeta,\eta)|, \zeta,\eta \in \mathcal{D}$, and $p_{\zeta}(x) = ||x\zeta||, \zeta$ $\zeta \in \mathcal{D}$, define the weak (WOT) and strong (SOT) operator topologies in $C_{\mathcal{E}}^{*}(\mathcal{D})$ (see [23, 3.3], [18, Ch. I]), respectively. One of the central results of [10] asserts that every multinormed W^* -algebra turns out to be a central completion of a von Neumann algebra, which in turn is identified with SOT-closed *-subalgebra of $C_{\mathcal{E}}^*(\mathcal{D})$ up to a *-isometry of the multinormed algebras. Namely, let \mathcal{M} be a von Neumann algebra with a domain \mathcal{E} in \mathcal{M} , that is, \mathcal{E} is a family of central projections in \mathcal{M} such that $\forall \mathcal{E} = 1$. The multinormed W^* -algebra $\mathcal{M}_{\mathcal{E}}$ is defined as the polynormed completion of \mathcal{M} (called its bounded part) equipped with the polynormed topology defined by the family of C^{*}-seminorms $||x||_e = ||xe||, x \in \mathcal{M}$ called a central topology of \mathcal{M} . Moreover, $\mathcal{M}_{\mathcal{E}}$ admits a unique (up the isometry) predual X (in the bornological sense), which is an ℓ_1 -normed space (see below Definition 3.1), and $\mathcal{M}_{\mathcal{E}} \subseteq C_{\mathcal{E}}^*(\mathcal{D})$ up to a *-isometry of the multinormed algebras. Thus $C_{\mathcal{E}}^{*}(\mathcal{D})$ plays the role of locally convex $\mathcal{B}(H)$.

The present paper is devoted to the characterizations of multinormed W^* -algebras in terms of their bounded parts. We say that $\mathcal{M}_{\mathcal{E}}$ is a multinormed semifinite (resp., finite) W^* -algebra if it a normal inverse limit of semifinite (resp., finite) von Neumann algebras. Similarly, we say that $\mathcal{M}_{\mathcal{E}}$ is of certain type if it a normal inverse limit of von Neumann algebras of the same type. It is not hard to prove that a multinormed W^* -algebra $\mathcal{M}_{\mathcal{E}}$ is of certain type iff its bounded part \mathcal{M} has the same type. In particular, $\mathcal{M}_{\mathcal{E}}$ is a multinormed semifinite (resp., finite) W^* -algebra iff \mathcal{M} is a semifinite (resp., finite) von Neumann algebra (see below Lemma 5.1). We classify multinormed semifinite W^* -algebras using continuous extensions of faithful semifinite normal traces τ from their bounded parts. The framework suggested allows to construct the multinormed noncommutative L^2 -space $L^2(\mathcal{M},\tau)_{\mathcal{E}}$ to be the union space of the isomorphic copy of the domain \mathcal{E} . The latter justifies our choice of the union space \mathcal{D} of the domain \mathcal{E} in the theory of multinormed W^{*}-algebras. Similarly, we construct the multinormed noncommutative L^1 -space $L^1(\mathcal{M},\tau)_{\mathcal{E}}$ to be ℓ^1 -normed predual of $\mathcal{M}_{\mathcal{E}}$. The conditional expectations occur as contractive (in the locally convex sense) projections that explains injectivity property of quantum spaces investigated in [11]. In section 3 we propose an explicit expression for the (bornological) predual of the multinormed W^{*}-algebra $\mathcal{M}_{\mathcal{E}}$. If \mathcal{M}_* is the predual of the von Neumann algebra \mathcal{M} then \mathcal{M}_* possesses a natural \mathcal{M} -bimodule structure, and we put $\mathcal{M}_{*\mathcal{E}} = \sum_{e \in \mathcal{E}} \mathcal{M}_{*e}$, which is a dense subspace of \mathcal{M}_{*} . The normed space $\mathcal{M}_{*\mathcal{E}}$ equipped with the bornology {ball \mathcal{M}_*e } is an ℓ^1 -normed space. The \mathcal{M} -bimodule structure on \mathcal{M} defines the linear mapping $T: \mathcal{M}_* \otimes_{\pi} \langle \mathcal{E} \rangle \to \mathcal{M}_*, T(\omega \otimes a) = \omega a$, where $\langle \mathcal{E} \rangle$ denotes the closed linear span of \mathcal{E} . Consider the subset $Y_{\mathcal{E}} = \{\omega e \otimes f - \omega f \otimes e : e, f \in \mathcal{E}\} \subseteq \mathcal{M}_* \otimes_{\pi} \langle \mathcal{E} \rangle, \ Y = \langle Y_{\mathcal{E}} \rangle \text{ and put } Y_0 = Y \cap (\mathcal{M}_* \otimes \mathcal{E}_*), \text{ where } \mathcal{E}_* \text{ is the } Y_0 \in \mathcal{F}_* \}$ linear span of \mathcal{E} in \mathcal{M} . Put $\mathcal{M}_* \widehat{\otimes}_{\mathcal{E}} \langle \mathcal{E} \rangle$ to be the quotient $(\mathcal{M}_* \otimes_{\pi} \langle \mathcal{E} \rangle) / Y$, whereas $\mathcal{M}_* \otimes_{\mathcal{E}} \mathcal{E}_*$ denotes the quotient normed space $(\mathcal{M}_* \otimes \mathcal{E}_*)/Y_0$. We prove that $\mathcal{M}_* \widehat{\otimes}_{\mathcal{E}} \langle \mathcal{E} \rangle = \mathcal{M}_*$ and $\mathcal{M}_* \otimes_{\mathcal{E}} \mathcal{E}_* = \mathcal{M}_{*\mathcal{E}}$ up to the isometric identifications given by T. Based on these equalities we prove that the bornological dual $(\mathcal{M}_{*\mathcal{E}})'$ of $\mathcal{M}_{*\mathcal{E}}$ is reduced to $\mathcal{M}_{\mathcal{E}}$ up to an isometry of the polynormed spaces, that is, $\mathcal{M}_{*\mathcal{E}}$ is the unique bornological predual of $\mathcal{M}_{\mathcal{E}}$.

In the abelian case, we have $\mathcal{M} = L^{\infty}(\mathcal{T})$ for a locally compact space \mathcal{T} equipped with a positive Radon integral $\int : C_c(\mathcal{T}) \to \mathbb{C}$, the domain \mathcal{E} in \mathcal{M} is reduced to a measurable covering of \mathcal{E} , and the completion

Download English Version:

https://daneshyari.com/en/article/8899374

Download Persian Version:

https://daneshyari.com/article/8899374

Daneshyari.com