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This paper studies the Cauchy problem for an integrable three-component Camassa–
Holm system. We first establish the local well-posedness with initial condition in 
Besov spaces. Then we prove a blow-up criteria by arguing inductively with respect 
to the regularity index. Moreover, we derive a Riccati-type differential inequality 
by using the structure of equations, and also prove a new blow-up criteria with 
sufficient conditions on initial condition, whose proof is based on the conservative 
property of potential densities along the characteristic.

© 2018 Published by Elsevier Inc.

1. Introduction

In this paper we consider the Cauchy problem for the following integrable three-component Camassa–
Holm system with cubic nonlinearity:

⎧⎪⎪⎨⎪⎪⎩
m1t + u2gm1x −m3(u2xf − u2g) −m1(3u2f −m3u2) = 0,
m2t + u2gm2x + m2(3u2xg + m3u2) = 0,
m3t + u2gm3x −m3(2u2f + u2xg −m3u2) = 0,
m1|t=0 = m10, m2|t=0 = m20, m3|t=0 = m30,

(1.1)

where

mi = ui − uixx, i = 1, 2, 3, f = u3 − u1x, g = u1 − u3x.
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The system (1.1) was proposed by Li, Liu and Popowicz in [26], which is associated with the following 3 ×3
matrix spectral problem ⎛⎜⎝ φ1

φ2
φ3

⎞⎟⎠
x

=

⎛⎜⎝ 0 0 1
λm1 0 λm3

1 λm2 0

⎞⎟⎠
⎛⎜⎝ φ1

φ2
φ3

⎞⎟⎠ , (1.2)

where m1, m2, m3 are three potentials and λ is a constant spectral parameter. Meanwhile, the authors 
pointed out that the system (1.1) can be rewritten as a bi-Hamiltonian system by⎛⎜⎝m1

m2
m3

⎞⎟⎠
t

= L1

⎛⎜⎝
δH0
δm1
δH0
δm2
δH0
δm3

⎞⎟⎠ = L2

⎛⎜⎝
δH1
δm1
δH1
δm2
δH1
δm3

⎞⎟⎠ (1.3)

with

H0 =
∫

(u1f + u2xg)gm2dx, H1 =
∫

gm2dx,

where L1 and L2 denote the Hamiltonian operators in terms of variables m1, m2, m3, see [26] for more 
details. Moreover, they have suggested the way to construct infinitely many conserved quantities for the 
integrable system (1.1).

If u3 ≡ 0, the system (1.1) reduces to the two-component Novikov system{
mt + uvmx + 3vuxm = 0,
nt + uvnx + 3uvxn = 0, (1.4)

where m = u − uxx, n = v − vxx. The system (1.4) was proposed by Geng and Xue [12], in which they 
calculated the N-peakons and conserved quantities and found a Hamiltonian structure. The associated 
bi-Hamiltonian structure for (1.4) was presented in [24]. It is proved that the Geng–Xue system also admits 
shockpeakons [28], which was first introduced for the Degasperis–Procesi equation [27]. Notice that if u = v

in (1.4), we obtain the famous Novikov equation [31]

mt + 3uuxm + u2mx = 0, m = u− uxx, (1.5)

which possesses a bi-Hamiltonian structure, an infinite sequence of conserved quantities and the explicit 
formulas for multipeakon solutions [20,21]. In the years immediately following, many attempts have been 
made to the studying of well-posedness, blow-up phenomena and analyticity for (1.5) in Sobolev spaces and 
Besov spaces, see for example [14,19,22,30,38].

By taking u2 ≡ 1 and u3 ≡ 0 in (1.1), it becomes the Degasperis–Procesi (DP) equation

mt + umx + 3uxm = 0, m = u− uxx. (1.6)

The formal integrability of DP equation can be proved by constructing a Lax pair, while the direct and 
inverse scattering approach to pursue it can be found in [8]. The DP equation has bi-Hamiltonian structure 
[8] and an infinite sequence of conserved quantities, and admits exact peakon solutions which are analogous 
to the Camassa–Holm peakons [2,6,7]. It is worth pointing out that solutions of this type are not mere 
abstractizations: the peakons replicate a feature that is characteristic for the waves of great height—waves 
of largest amplitude that are exact solutions of the governing equations for irrotational water waves [3,33]. 
Recently, by applying the dressing method to smooth localized solutions of (1.6), Constantin and Ivanov 
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