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conjecture on a complete g-analogue of this supercongruence of Van Hamme and
prove it in a weaker form via the ¢-WZ method. Additionally, we give a g-analogue
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Ramanujan of a related congruence involving cubes of binomial coefficients due to Sun in the
Supercongruence same way. We also present a conjecture on a g-analogue of the corresponding infinite
¢-WZ method series for 1/m due to Ramanujan.
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¢-Gamma function

1. Introduction
In his second notebook, Ramanujan recorded the following formula for 1/7 (see [2, p. 352]):

= (6k+1)(2); 4
Z ( )(2)k =, (11)
k!34k T
k=0
where we use the Pochhammer symbol (a)y = a(a+1)---(a+ k — 1). The identity (1.1) can also be found
in Ramanujan’s paper [22] together with some other similar examples that enable us to compute 7 very
accurately.
Curiously, a proof of (1.1) was not found until 1987, when J.M. Borwein and P.B. Borwein proved it in
their book [4, pp. 177-187]. In 1997, Van Hamme conjectured a p-adic analogue of (1.1) as follows:

Entry (J.2) (Van Hamme [29]). Let p > 3 be a prime. Then

Z 6k;34k (2 (-1)" % p (mod p*). (1.2)
k=0
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Supercongruences of this type are called Ramanujan-type supercongruences. Entry (J.2) is one of 13
Ramanujan-type supercongruences originally conjectured by Van Hamme [29]. All of the 13 supercongru-
ences have now been confirmed using a variety of techniques (see [20,27] for historic remarks on this). For
example, the supercongruence (B.2) was first proved by Mortenson [18] using a ¢F5 transformation and
a technical evaluation of a quotient of Gamma functions. The entry (J.2) was proved by Long [16] using
hypergeometric identities. Zudilin [33] adopted the method of Wilf-Zeilberger (WZ) pairs not only to give
another proof of (B.2), but also to demonstrate several new Ramanujan-type supercongruences. Neverthe-
less, Zudilin [33] pointed out that the known WZ pairs can only be used to prove the supercongruence (J.2)
modulo p2.

On the other hand, the author and Zeng [13, Corollary 1.2] have given a g-analogue of (H.2). Motivated
by Zudilin’s work [33], the author [10,11] used the ¢-WZ method to obtain g-analogues of (B.2), (E.2),
and (F.2). The author and Wang [12] used a variation of the ¢-WZ method to prove a g-analogue of [16,
Theorem 1.1]. Thus a g-analogue of (C.2) is also known. Note that some other interesting g-congruences
were given in [15,21,23,24,28].

In this paper we shall give a complete g-analogue of (J.2). Recall that the g-shifted factorial is defined
by (a;9)n = (1 —a)(1 —aq)--- (1 —ag™ ') for n > 1 and (a;q)o = 1, while the g-integer is defined as
[n] = [n]g = (1 —¢")/(1 — ¢). The n-th cyclotomic polynomial ®,/(q) is given by

Q,.(q) = H (q— e2min )s

1<k<n
ged(k,n)=1

where i is the imaginary unit. It is clear that ®,(¢) = [p] for any prime p. Some other basic properties of
cyclotomic polynomials can be found in [19].
Our g-analogue of Van Hamme’s supercongruence (J.2) can be stated as follows:

Conjecture 1.1. Let n be a positive odd integer. Then

ok 1)@ i@m)q>

e (2= D1~ q)

o P(=a)F  (mod [n]@,(q)°). (1.3)

Clearly, the congruence (1.3) modulo [n]®, (q)? reduces to

n—1

Zq6m-L7%%§Lzmewf (mod [}, ()°). (1.4

It is interesting that (1.4) has an accompanying congruence as follows:

Conjecture 1.2. Let n be a positive odd integer. Then

n—1

2 (@:4°)i(a* aw _ Ln
> d" 6k +1] g =l(-a) T (mod [n]®na(q)?). (1.5)
= (¢*;9%)
Note that, when n = p is an odd prime, the congruences (1.4) and (1.5) modulo [p]® are equivalent to
a2
each other, since é‘ﬂ’%ffk =0 (mod [p]) for (p+1)/2 < k < p—1. But for general n they are clearly different
congruences.

The first purpose of this paper is to prove the following weaker form of Conjectures 1.1 and 1.2.
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