

Smallness and cancellation in some elliptic systems with measure data

Francesco Leonetti ${ }^{\text {a }}$, Eugénio Rocha ${ }^{\text {b }}$, Vasile Staicu ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università di L'Aquila, 67100
L'Aquila, Italy
b CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

A R T I C L E IN F O

Article history:

Received 28 February 2018
Available online xxxx
Submitted by A. Cianchi

Keywords:

Elliptic
System
Existence
Solution
Measure

A B S T R A C T

In a bounded open subset $\Omega \subset \mathbb{R}^{n}$, we study Dirichlet problems with elliptic systems, involving a finite Radon measure μ on \mathbb{R}^{n} with values into \mathbb{R}^{N}, defined by

$$
\begin{cases}-\operatorname{div} A(x, u(x), D u(x))=\mu & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $A_{i}^{\alpha}(x, y, \xi)=\sum_{\beta=1}^{N} \sum_{j=1}^{n} a_{i, j}^{\alpha, \beta}(x, y) \xi_{j}^{\beta}$ with $\alpha \in\{1, \ldots, N\}$ the equation index. We prove the existence of a (distributional) solution $u: \Omega \rightarrow \mathbb{R}^{N}$, obtained as the limit of approximations, by assuming: (i) that coefficients $a_{i, j}^{\alpha, \beta}$ are bounded Carathéodory functions; (ii) ellipticity of the diagonal coefficients $a_{i, j}^{\alpha, \alpha}$; and (iii) smallness of the quadratic form associated to the off-diagonal coefficients $a_{i, j}^{\alpha, \beta}$ (i.e. $\alpha \neq \beta$) verifying a r-staircase support condition with $r>0$. Such a smallness condition is satisfied, for instance, in each one of these cases: (a) $a_{i, j}^{\alpha, \beta}=-a_{j, i}^{\beta, \alpha}$ (skew-symmetry); (b) $\left|a_{i, j}^{\alpha, \beta}\right|$ is small; (c) $a_{i, j}^{\alpha, \beta}$ may be decomposed into two parts, the first enjoying skew-symmetry and the second being small in absolute value. We give an example that satisfies our hypotheses but does not satisfy assumptions introduced in previous works. A Brezis's type nonexistence result is also given for general (smooth) elliptic-hyperbolic systems.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the Dirichlet elliptic problem

$$
\begin{equation*}
-\operatorname{div}[A(x, u(x), D u(x))]=\mu \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

\]

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, \mu$ is a measure on \mathbb{R}^{n} with values into \mathbb{R}^{N} and A satisfies suitable coercivity and growth conditions. We note that (1.1) is a system of N equations.

First consider the case $N=1$, i.e. (1.1) is only one single equation. Existence of distributional solutions $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ has been deeply studied, starting from [11], see [16], [25], [12], [61], [7] and the survey [8]. Uniqueness seems to be a delicate matter, e.g. see [62], [5], [32] and the introduction of [24]. Regularity results are contained in [56], [57], [59], [17], [18], [58], [35], [40], [3], [2], [14] and the survey [60] (see also [9] and [10]). Note that existence of solutions is usually obtained by a truncation argument, which shows why the vectorial case $N \geq 2$ is difficult and only few contributions are available in the literature. In fact, for systems $N \geq 2$, the p-Laplacian $A(x, y, \xi)=|\xi|^{p-2} \xi$ is treated in [31] and [26], and the anisotropic case, in which each component of the gradient $D_{i} u$ may have a possibly different exponent p_{i}, is dealt in [50] and [51]. Let us mention [41] for pointwise potential estimates in the framework of vectorial p-Laplacian. Let us write (1.1) using components, that is,

$$
\begin{equation*}
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left[A_{i}^{\alpha}(x, u(x), D u(x))\right]=\mu^{\alpha} \quad \text { for } \alpha \in\{1, \ldots, N\} \tag{1.3}
\end{equation*}
$$

We note that systems more general than the p-Laplacian are considered in [27] and [29], under the assumption

$$
\begin{equation*}
0 \leq \sum_{\alpha=1}^{N} \sum_{i=1}^{n} A_{i}^{\alpha}(x, y, \xi)((I d-b \times b) \xi)_{i}^{\alpha} \tag{1.4}
\end{equation*}
$$

for every $b \in \mathbb{R}^{N}$ with $|b| \leq 1$; see also [42], [6], [20] where (1.4) has been used. In [63], the author assumes the componentwise sign condition

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} A_{i}^{\alpha}(x, y, \xi) \xi_{i}^{\alpha} \tag{1.5}
\end{equation*}
$$

for every $\alpha \in\{1, \ldots, N\}$. When $N=2$, (1.4) implies (1.5), since it is enough to take first $b=(1,0)$ and then $b=(0,1)$. In $[52]$, the authors consider that A is independent of y and satisfies the componentwise coercivity condition

$$
\begin{equation*}
\nu\left|\xi^{\alpha}\right|^{2}-M \leq \sum_{i=1}^{n} A_{i}^{\alpha}(x, \xi) \xi_{i}^{\alpha} \tag{1.6}
\end{equation*}
$$

for every $\alpha \in\{1, \ldots, N\}$, for some constants $\nu \in(0,+\infty)$ and $M \in[0,+\infty)$. In [28], they relax (1.4) to some extent

$$
\begin{equation*}
-c|\xi|^{q}-g(x) \leq \sum_{\alpha=1}^{N} \sum_{i=1}^{n} A_{i}^{\alpha}(x, y, \xi)((I d-b \times b) \xi)_{i}^{\alpha} \tag{1.7}
\end{equation*}
$$

for some $c \in[0,+\infty), g \in L^{1}(\Omega)$ and $q \in[1, n)$ where $\xi \mapsto A(x, y, \xi)$ is n-coercive.
We note that in [32], [30] and [53] the authors do not truncate u. They modify $D u$ and then adjust via Hodge decomposition; such a procedure requires the dimension n to be the exponent in the coercivity condition for A. The authors use nice estimates for Hodge decomposition, which have been studied in [33] (see also appendix A, in [34]).

https://daneshyari.com/en/article/8899426

Download Persian Version:

https://daneshyari.com/article/8899426

Daneshyari.com

[^0]: E-mail addresses: leonetti@univaq.it (F. Leonetti), eugenio@ua.pt (E. Rocha), vasile@ua.pt (V. Staicu).
 https://doi.org/10.1016/j.jmaa.2018.05.047
 0022-247X/© 2018 Elsevier Inc. All rights reserved.

