Sharp Hardy constants for annuli

F.G. Avkhadiev
Lobachevsky Inst. of Math. and Mech., Kazan Federal University, Kremlevskaya str., 35, 420008, Kazan, Russia

A R T I C L E I N F O

Article history:

Received 2 April 2017
Submitted by E. Saksman

Keywords:

Hardy inequality
Conformal modulus
Hypergeometric function
Rellich type inequality

A B S T R A C T

We consider the Hardy inequality in canonical doubly connected plane domains. For any annulus A we determine sharp Hardy's constant $c_{2}(A)$ in function of conformal modulus $M(A)$. Namely, for any annulus A with fixed conformal modulus $M(A)=$ M we prove that

$$
c_{2}(A)= \begin{cases}1 / 4, & \text { if } M \in\left(0, M^{*}\right] \\ \gamma(2-\gamma) / 4, & \text { if } M \in\left(M^{*}, \infty\right)\end{cases}
$$

where $\gamma=\gamma(M) \in(1,2)$. The critical modulus $M^{*} \approx 0.57298$ and the values of $\gamma(M)$ are found as roots of certain equations, containing the Gauss hypergeometric functions. In particular, we show that the sharp Hardy constants $c_{2}(A)$ depend on M continuously and that they tend to zero as $M \rightarrow \infty$. In addition, we describe an application of results to a Rellich type inequality.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $\Omega \subset \mathbb{C}$ be a plane domain such that $\Omega \neq \mathbb{C}$. We consider functions $\varphi: \Omega \rightarrow \mathbb{R}$ and the following Hardy inequality

$$
\begin{equation*}
\iint_{\Omega}|\nabla \varphi(z)|^{2} d x d y \geq c_{2}(\Omega) \iint_{\Omega} \frac{\varphi^{2}(z)}{(\operatorname{dist}(z, \partial \Omega))^{2}} d x d y, \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

where $z=x+i y, \operatorname{dist}(z, \partial \Omega):=\inf _{\zeta \in \partial \Omega}|z-\zeta|$ is the distance from a point $z \in \Omega$ to the boundary of the domain. We suppose that the quantity $c_{2}(\Omega)$ is defined as the best possible constant, i.e.

$$
\begin{equation*}
c_{2}(\Omega)=\inf _{\varphi \in C_{0}^{\infty}(\Omega), \varphi \neq 0} \frac{\iint_{\Omega}|\nabla \varphi(z)|^{2} d x d y}{\iint_{\Omega} \varphi^{2}(z)(\operatorname{dist}(z, \partial \Omega))^{-2} d x d y} . \tag{2}
\end{equation*}
$$

[^0]There are many results connected with inequality (1) (see, for instance, [2], [7], [9], [11], [12] and the bibliography in [9]). In particular, it is well known that $c_{2}(\Omega)>0$, i.e. inequality (1) is non-trivial, for any bounded domain Ω with locally Lipschitz boundary. From (2) it follows that $c_{2}(\Omega)=c_{2}(a \Omega+b)$, where $a, b \in \mathbb{C}, a \neq 0$, and $a \Omega+b=\{a z+b: z \in \Omega\}$.

The sharp value of $c_{2}(\Omega)$ is known for convex domains. Namely, several authors independently proved that $c_{2}(\Omega)=1 / 4$ for any convex domain $\Omega \neq \mathbb{C}$ (see a detailed description in [3], [4], [9], [10]). Also, it is proved that $c_{2}(\Omega)=1 / 4$ for some non-convex domains close to convex in a certain sense (see [4], [9], [10]). By the way, the following Davies problem [10] is still open: is it true that $c_{2}(\Omega) \leq 1 / 4$ for any plane domain $\Omega \neq \mathbb{C}$?

The aim of this paper is to find sharp Hardy constants for annuli of the form

$$
A=A\left(z_{0}, r_{1}, r_{2}\right)=\left\{z \in \mathbb{C}: r_{1}<\left|z-z_{0}\right|<r_{2}\right\}, 0<r_{1}<r_{2}<\infty
$$

Since $c_{2}(A)=c_{2}(a A+b), a \neq 0$, the constant $c_{2}\left(A\left(z_{0}, r_{1}, r_{2}\right)\right)$ depends on the conformal modulus

$$
M\left(A\left(z_{0}, r_{1}, r_{2}\right)\right):=\frac{1}{2 \pi} \ln \frac{r_{2}}{r_{1}}
$$

only. In addition, one can find the following properties of $c_{2}(A)$.
(i) From [10] it follows that $c_{2}(A) \leq 1 / 4$ for any annulus A with finite modulus. (ii) It is known [3] that $c_{2}(A)=O\left(M^{-2}(A)\right)$ as $M(A) \rightarrow \infty$. In particular, $c_{2}\left(A\left(z_{0}, 0,1\right)\right)=0$. (iii) From Theorem 1 in [4] it follows that $c_{2}(A)=1 / 4$ for annuli with sufficiently small moduli. More precisely, it is proved that $c_{2}(A)=1 / 4$ for every annulus $A=A\left(z_{0}, r_{1}, r_{2}\right)$ satisfying the condition $\left(r_{2}-r_{1}\right) / 2 \leq r_{1} \Lambda_{2}$, where $\Lambda_{2} \approx 2,4929$. Therefore, if $M(A) \leq 0.28479$, then $c_{2}(A)=1 / 4$.

Of course, the problem to find $c_{2}(A)$ is widely known. In addition, this paper is stimulated by the following question of A. I. Aptekarev: is it true that given $\lambda \in(0,1 / 4)$ there exists a domain Ω_{λ} such that $c_{2}\left(\Omega_{\lambda}\right)=\lambda$? (raised in the seminar on Complex Analysis (Gonchar seminar), 14.11.2016). The main results of this paper are presented by Theorems 1 and 2, below. For any annulus A with modulus $M(A)=M$ we prove that

$$
c_{2}(A)= \begin{cases}1 / 4, & \text { if } M \in\left(0, M^{*}\right] \\ \gamma(2-\gamma) / 4, & \text { if } M \in\left(M^{*}, \infty\right)\end{cases}
$$

where $M^{*} \approx 0.57298, \gamma=\gamma(M) \in(1,2), \gamma\left(\left(M^{*}, \infty\right)\right)=(1,2)$. In particular, we get a positive answer to the Aptekarev question.

The paper is organized as follows. Using Gauss' hypergeometric functions in Section 2 we give equations to find the critical modulus M^{*} and the values of the continuous function $\gamma:\left(M^{*}, \infty\right) \rightarrow(1,2)$ and we formulate Theorems 1 and 2. Section 3 contains proofs of Theorems 1 and 2 via 5 lemmas. In Section 4 we examine the behavior of $c_{2}(A)$ as $M(A) \rightarrow \infty$ and describe an application of results to a Rellich type inequality.

2. Main results

We need the Euler gamma function Γ, the Gauss hypergeometric equation $\zeta(1-\zeta) u^{\prime \prime}+(\gamma-(\alpha+\beta+$ 1) ζ) $u^{\prime}-\alpha \beta u=0$ and the hypergeometric series

$$
F(\alpha, \beta ; \gamma ; \zeta)=1+\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\beta)} \sum_{n=1}^{\infty} \frac{\Gamma(n+\alpha) \Gamma(n+\beta)}{n!\Gamma(n+\gamma)} \zeta^{n}, \quad|\zeta|<1
$$

with the following parameters:

https://daneshyari.com/en/article/8899429

Download Persian Version:

https://daneshyari.com/article/8899429

Daneshyari.com

[^0]: E-mail address: avkhadiev47@mail.ru.
 https://doi.org/10.1016/j.jmaa.2018.06.031
 0022-247X/© 2018 Elsevier Inc. All rights reserved.

