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1. Introduction and preliminaries
1.1. Harmonic numbers and Euler sums

The generalized nth-harmonic numbers of order p are given by ([23])

n

1
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j=1

where the H, = HS" is the classical harmonic number ([1]) and the empty sum Hép ) is conventionally
understood to be zero.
In response to a letter from Goldbach in 1742, Euler considered sums of the form (see Berndt [4])

o0 H7(zp)
Sp,q = Z nd
n=1

where p, ¢ are positive integers with ¢ > 2, and w := p + g denotes the weight of sums S, ;. These sums are
called the linear Euler sums today. Euler discovered that in the cases p = 1, p = ¢ and p + ¢ is less than
7 or when p 4 ¢ is odd and less than 13, the linear sums have evaluations in terms of zeta values, i.e., the
values of the Riemann zeta function ([2])

s) =3 %,%(s) 51
n=1

at the positive integer arguments. Moreover, he conjectured that the double linear sums would be reducible
to zeta values when p + ¢ is odd, and even gave what he hoped was the general formula. In 1995, Borweins
and Girgensohn [10] proved the conjecture and formula, and in 1994, Bailey, Borwein and Girgensohn [3]
conjectured that the linear sums S, ,, when p + ¢ > 7 and p + ¢ is even, are not reducible. Hence, the
linear sums S, 4 can be evaluated in terms of zeta values in the following cases: p = 1,p = ¢,p + q odd and
p+q=4,6 with ¢ > 2.

Similarly, the nonlinear Euler sums are the infinite sums whose general term is a product of harmonic
numbers of index n and a power of n=!. Let 7 := (71, ..., 7)) be a partition of integer pand p = w1 +- - - +mp
with 3 < 7y < -+ < mg. The classical nonlinear Euler sum of index 7, ¢ is defined as follows (see [23])

nd ;=2 (1.2)

Srimaemn,g =

where the quantity w := 71 + - - - + 7 + ¢ is called the weight and the quantity & is called the degree. As
usual, repeated summands in partitions are indicated by powers, so that for instance

& H2 Hr(LQ) 3H7(14)
Si2034,g = S112204, = Z %

nd
n=1

The nonlinear Euler sums, i.e., S, with 7 having two or more parts, are more complicated. Such sums
were already considered in [3,23,43,45,47,48 51,52]. In [23], Flajolet and Salvy gave an algorithm for reducing
Sryr,q to linear Euler sums when 71 +m2 +¢ is even and 71, w2, ¢ > 1 (see Theorem 4.2 in the reference [23]).
In [51,52], the first author jointly with Li, Yan and Shi proved that all quadratic Euler sums of the form
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