

Closed-form expressions for derivatives of Bessel functions with respect to the order

J.L. González-Santander
C/ Ovidi Montllor i Mengual 7, pta. 9, 46017 Valencia, Spain

A R T I C L E I N F O

Article history:

Received 20 February 2018
Available online xxxx
Submitted by K. Driver

Keywords:

Bessel functions
Modified Bessel functions
Generalized hypergeometric
functions
Meijer- G function

Abstract

We have used recent integral representations of the derivatives of the Bessel functions with respect to the order to obtain closed-form expressions in terms of generalized hypergeometric functions and Meijer- G functions. Also, we have carried out similar calculations for the derivatives of the modified Bessel functions with respect to the order, obtaining closed-form expressions as well. For this purpose, we have obtained integral representations of the derivatives of the modified Bessel functions with respect to the order. As by-products, we have calculated two nontabulated integrals.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Bessel functions have had many applications since F.W. Bessel (1784-1846) found this kind of functions in his studies of planetary motion. In Physics, these functions arise naturally in boundary value problems of potential theory for cylindrical domains [8, Chap. 6]. In Mathematics, the Bessel functions are encountered in the theory of differential equations with turning points, and well as with poles [11, Sect. 10.72]. Thereby, the theory of Bessel functions has been studied extensively in many classical textbooks [14, 1].

Usually, the definition of the Bessel function of the first kind $J_{\nu}(z)$ and the modified Bessel function $I_{\nu}(z)$ are given in series form as follows:

$$
\begin{equation*}
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}(z / 2)^{2 k}}{k!\Gamma(\nu+k+1)} \tag{1}
\end{equation*}
$$

and

[^0]\[

$$
\begin{equation*}
I_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(z / 2)^{2 k}}{k!\Gamma(\nu+k+1)} . \tag{2}
\end{equation*}
$$

\]

The Bessel function of the second kind $Y_{\nu}(z)$ is defined in terms of the Bessel function of the first kind as

$$
\begin{equation*}
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \pi \nu-J_{-\nu}(z)}{\sin \pi \nu}, \quad \nu \notin \mathbb{Z} \tag{3}
\end{equation*}
$$

and similarly, for the Macdonald function $K_{\nu}(z)$, we have

$$
\begin{equation*}
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \pi \nu}, \quad \nu \notin \mathbb{Z} . \tag{4}
\end{equation*}
$$

Despite the fact, that the literature about the Bessel functions is very large as mentioned before, the literature regarding the derivatives of $J_{\nu}, Y_{\nu}, I_{\nu}$ and K_{ν} with respect to the order ν is relatively scarce. For instance, for $\nu= \pm 1 / 2$ we find expressions for the order derivatives in terms of the exponential integral $\mathrm{Ei}(z)$ and the sine and cosine integrals, $\mathrm{Ci}(z)$ and $\operatorname{Si}(z)[10,3]$. By using the recurrence relations of Bessel [11, Eqn. 10.6.1] and modified Bessel functions [8, Eqn. 5.7.9], we can derive expressions for half-integral order $\nu=n \pm 1 / 2$. Also, for integral order $\nu=n$ we find some series representations in [3]. For arbitrary order, we have the following series representations [11, Eqns. 10.15.1 \& 10.38.1]

$$
\begin{equation*}
\frac{\partial J_{\nu}(z)}{\partial \nu}=J_{\nu}(z) \log \left(\frac{z}{2}\right)-\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\psi(\nu+k+1)(-1)^{k}(z / 2)^{2 k}}{k!\Gamma(\nu+k+1)}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial I_{\nu}(z)}{\partial \nu}=I_{\nu}(z) \log \left(\frac{z}{2}\right)-\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\psi(\nu+k+1)(z / 2)^{2 k}}{k!\Gamma(\nu+k+1)} \tag{6}
\end{equation*}
$$

which are obtained directly from (1) and (2). Also, from (3) and (4), we can calculate the order derivative of Y_{ν} and K_{ν} as [11, Eqns. 10.15.2 \& 10.38.2],

$$
\begin{equation*}
\frac{\partial Y_{\nu}(z)}{\partial \nu}=\cot \pi \nu\left[\frac{\partial J_{\nu}(z)}{\partial \nu}-\pi Y_{\nu}(z)\right]-\csc \pi \nu \frac{\partial J_{-\nu}(z)}{\partial \nu}-\pi J_{\nu}(z), \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial K_{\nu}(z)}{\partial \nu}=\frac{\pi}{2} \csc \pi \nu\left[\frac{\partial I_{-\nu}(z)}{\partial \nu}-\frac{\partial I_{\nu}(z)}{\partial \nu}\right]-\pi \cot \pi \nu K_{\nu}(z) . \tag{8}
\end{equation*}
$$

Although we can accelerate the convergence of the alternating series given in (5) by using Cohen-VillegasZagier algorithm [5], this series does not converge properly for large z, and it is not useful from a numeric point of view. Also, the series given in (6) is not useful for large z as well.

Nonetheless, in the literature we find integral representations of $J_{\nu}(z)$ and $I_{\nu}(z)$ in [2], which read as

$$
\begin{equation*}
\frac{\partial J_{\nu}(z)}{\partial \nu}=\pi \nu \int_{0}^{\pi / 2} \tan \theta Y_{0}\left(z \sin ^{2} \theta\right) J_{\nu}\left(z \cos ^{2} \theta\right) d \theta, \quad \operatorname{Re} \nu>0 \tag{9}
\end{equation*}
$$

and

https://daneshyari.com/en/article/8899441

Download Persian Version:

https://daneshyari.com/article/8899441

Daneshyari.com

[^0]: E-mail address: juanluis.gonzalezsantander@gmail.com.
 https://doi.org/10.1016/j.jmaa.2018.06.043
 0022-247X/© 2018 Elsevier Inc. All rights reserved.

