Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Topological transitivity and mixing of composition operators

Frédéric Bayart^a, Udayan B. Darji^{b,c}, Benito Pires^{d,*}

^a Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France

^b Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

^c Ashoka University, Rajiv Gandhi Education City, Kundli, Rai 131029, India
^d Departamento de Computação e Matemática, Faculdade de Filosofia, Ciências e Letras, Universidade de

São Paulo, 14040-901, Ribeirão Preto - SP, Brazil

A R T I C L E I N F O

Article history: Received 17 October 2017 Available online 7 May 2018 Submitted by Y. Huang

Keywords: Composition operator Topological dynamics Linear dynamics Linear chaos Hypercyclic operator

ABSTRACT

Let $X = (X, \mathcal{B}, \mu)$ be a σ -finite measure space and $f : X \to X$ be a measurable transformation such that the composition operator $T_f : \varphi \mapsto \varphi \circ f$ is a bounded linear operator acting on $L^p(X, \mathcal{B}, \mu)$, $1 \leq p < \infty$. We provide a necessary and sufficient condition on f for T_f to be topologically transitive or topologically mixing. We also characterize the topological dynamics of composition operators induced by weighted shifts, non-singular odometers and inner functions. The results provided in this article hold for composition operators acting on more general Banach spaces of functions.

@ 2018 Elsevier Inc. All rights reserved.

1. Introduction

It is widely known that bounded linear operators acting on infinite dimensional Banach spaces may present chaotic behaviour (see [1,8]). Special attention has been devoted to the study of chaos in the sense of Devaney and Li-Yorke (see [2,3,7]). One of the key ingredients of chaos is the notion of topological transitivity. More specifically, a bounded linear operator T acting on a Banach space \mathcal{X} is topologically transitive if for any pair $U, V \subset \mathcal{X}$ of nonempty open sets, there exists an integer $k \ge 0$ such that $T^k(U) \cap V \neq \emptyset$. When \mathcal{X} is a separable Banach space, topological transitivity is equivalent to being hypercyclic, that is, to the existence of a dense T-orbit $Orb(\varphi, T) = \{\varphi, T\varphi, T^2\varphi, \ldots\}$.

Here we are interested in the dynamics of the composition operator $T_f : \varphi \mapsto \varphi \circ f$ acting on a Banach space of functions \mathcal{X} . This is a subject that already appeared in the literature for regular functions, like holomorphic functions (see for instance [14]) or smooth functions (see [12]). Here, we focus on measurable functions and L^p -spaces. More precisely, let (X, \mathcal{B}, μ) be a σ -finite measure space and $(\mathcal{X}, \|\cdot\|) \subset L^0(\mu)$ be a Banach space of functions defined on X. We will always assume that $\mu(X) > 0$ and that \mathcal{X} is a lattice: if

Corresponding author. E-mail addresses: Frederic.Bayart@uca.fr (F. Bayart), ubdarj01@gmail.com (U.B. Darji), benito@usp.br (B. Pires).

 ψ_1, ψ_2 are measurable functions with $|\psi_1| \leq |\psi_2|$ and $\psi_2 \in \mathcal{X}$, then $\psi_1 \in \mathcal{X}$ and $||\psi_1|| \leq ||\psi_2||$. We will say that \mathcal{X} is *admissible* provided it satisfies the following assumptions

- (H1) For any $A \in \mathcal{B}$ with finite measure, the function χ_A belongs to \mathcal{X} ;
- (H2) The set of simple functions which vanish outside a set of finite measure is dense in \mathcal{X} ;
- (H3) For all $\epsilon > 0$, there exists $\delta > 0$ such that, for all $\psi \in \mathcal{X}$, for all $S \in \mathcal{B}$, $|\psi| \ge 1$ on S and $||\psi|| \le \delta$ imply $\mu(S) < \epsilon/2$;
- (H4) For all $\eta > 0$ and for all M > 0, there exists $\epsilon > 0$ such that for all $\psi \in \mathcal{X}$, for all $S \in \mathcal{B}$, $\mu(S) < \epsilon$, $\psi = 0$ on $X \setminus S$ and $|\psi| \le 2M$ imply $||\psi|| < \eta/2$.

It is clear that L^p -spaces are admissible (in particular, (H3) follows from Markov's inequality). Throughout the paper, we will assume that $f: X \to X$ is nonsingular (namely $\mu(f^{-1}(S)) = 0$ whenever $\mu(S) = 0$). This ensures that $\varphi \circ f$ is well-defined for every $\varphi \in L^0(\mu)$. A necessary and sufficient condition for boundedness on $L^p(\mu)$ is the existence of some c > 0 such that $\mu(f^{-1}(B)) \leq c\mu(B)$ for all $B \in \mathcal{B}$ (see [15]).

Our first result is a necessary and sufficient condition for the composition operator T_f to be topologically transitive. We do not make any extra assumption: neither X need to have finite measure nor f has to be bimeasurable or injective.

Theorem 1.1. Let (X, \mathcal{B}, μ) be a σ -finite measure space and \mathcal{X} be an admissible Banach space of functions defined on X. Let $f: X \to X$ be measurable such that the composition operator $T_f: \varphi \mapsto \varphi \circ f$ is bounded on \mathcal{X} . Then the following assumptions are equivalent:

- (A1) T_f is topologically transitive;
- (A2) $f^{-1}(\mathcal{B}) = \mathcal{B}$ and, for all $\epsilon > 0$, for all $A \in \mathcal{B}$ with finite measure, there exist $B \subset A$ measurable, $k \ge 1$ and $C \in \mathcal{B}$ such that

$$\mu(A \backslash B) < \epsilon, \ \mu(f^{-k}(B)) < \epsilon, \ f^k(B) \subset C \ and \ \mu(C) < \epsilon.$$

We mention that a version of Theorem 1.1 has been already given by Kalmes in [9, Theorem 2.4] under additional assumptions. More specifically, he assumes that X is σ -compact, μ is locally finite and $f: X \to X$ is injective and continuous. As we show throughout this article, there are plenty of topologically transitive composition operators whose underlying map $f: X \to X$ is not continuous or is defined on a space X that it is not σ -compact.

Another key ingredient of chaos is the notion of topological mixing. A bounded linear operator $T : \mathcal{X} \to \mathcal{X}$ of a Banach space \mathcal{X} is topologically mixing if for any pair $U, V \subset \mathcal{X}$ of nonempty open sets, there exists an integer $k_0 \geq 0$ such that $T^k(U) \cap V \neq \emptyset$ for every $k \geq k_0$. Our second result is the following.

Theorem 1.2. Let (X, \mathcal{B}, μ) be a σ -finite measure space and \mathcal{X} be an admissible Banach space of functions defined on X. Let $f: X \to X$ be measurable such that the composition operator $T_f: \varphi \mapsto \varphi \circ f$ is bounded on \mathcal{X} . Then the following assumptions are equivalent:

- (B1) T_f is topologically mixing;
- (B2) $f^{-1}(\mathcal{B}) = \mathcal{B}$ and, for all $\epsilon > 0$, for all $A \in \mathcal{B}$ with finite measure, there exist $k_0 \ge 1$ and two sequences $(B_k), (C_k)$ of measurable subsets of X such that, for all $k \ge k_0$,

$$\mu(A \setminus B_k) < \epsilon, \ \mu(f^{-k}(B_k)) < \epsilon, \ f^k(B_k) \subset C_k \ and \ \mu(C_k) < \epsilon.$$

Conditions (A2) and (B2) are simplified when we add extra-assumptions on f or X. For instance, if f is one-to-one and bimeasurable, the condition $f^{-1}(\mathcal{B}) = \mathcal{B}$ is automatically satisfied and we do not need the

Download English Version:

https://daneshyari.com/en/article/8899467

Download Persian Version:

https://daneshyari.com/article/8899467

Daneshyari.com