

Multiple positive and sign-changing solutions of an elliptic equation with fast increasing weight and critical growth

Xiaotao Qian ${ }^{\text {a,b,* }}$, Jianqing Chen ${ }^{\text {a,1 }}$
${ }^{\text {a }}$ College of Mathematics and Computer Science ε FJKLMAA, Fujian Normal University, Qishan Campus, Fuzhou 350108, PR China
b Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China

A R T I C L E I N F O

Article history:

Received 6 July 2017
Available online xxxx
Submitted by E. Saksman
Keywords:
Variational methods
Multiple positive and sign-changing solutions
Critical problems

A B S T R A C T

We consider the following equation

$$
-\operatorname{div}(K(x) \nabla u)=\lambda K(x)|x|^{\beta}|u|^{q-2} u+Q(x) K(x)|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N}
$$

where $N \geq 3,2<q<2^{*}=2 N /(N-2), \lambda>0$ is a parameter, $K(x)=\exp \left(|x|^{\alpha} / 4\right)$, $\alpha \geq 2, \beta=(\alpha-2) \frac{\left(2^{*}-q\right)}{\left(2^{*}-2\right)}$ and $0 \leq Q(x) \in C\left(\mathbb{R}^{N}\right)$. Using variational methods and delicate estimates, we establish some existence and multiplicity of positive and sign-changing solutions for the problem, provided that the maximum of $Q(x)$ is achieved at different points.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of positive and sign-changing solutions for the following problem:

$$
\begin{equation*}
-\operatorname{div}(K(x) \nabla u)=\lambda K(x)|x|^{\beta}|u|^{q-2} u+Q(x) K(x)|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $N \geq 3,2<q<2^{*}=2 N /(N-2), \lambda>0$ is a parameter, $K(x)=\exp \left(|x|^{\alpha} / 4\right), \alpha \geq 2, \beta=(\alpha-2) \frac{\left(2^{*}-q\right)}{\left(2^{*}-2\right)}$ and $0 \leq Q(x) \in C\left(\mathbb{R}^{N}\right)$ is assumed to satisfy the following condition:

[^0]https://doi.org/10.1016/j.jmaa.2018.05.058
0022-247X/© 2018 Elsevier Inc. All rights reserved.
$(Q 1)$ There exist k different points $a^{1}, a^{2}, \ldots, a^{k}$ in \mathbb{R}^{N} such that $Q\left(a^{j}\right)$ are strict maximums and satisfy
$$
Q\left(a^{j}\right)=Q_{M}=\max \left\{Q(x): x \in \mathbb{R}^{N}\right\}>0, \quad j=1,2, \ldots, k ;
$$
(Q2) None of the points $a^{1}, a^{2}, \ldots, a^{k}$ is an origin;
($Q 2^{\prime}$) One of the points $a^{1}, a^{2}, \ldots, a^{k}$ is an origin;
\[

Q_{M}-Q(x)=\left\{$$
\begin{array}{ll}
o\left(\left|x-a^{j}\right|^{N-(N-2) q / 2}\right), & \text { if } a^{j} \neq 0, \tag{Q3}\\
o\left(\left|x-a^{j}\right|^{N+\beta-(N-2) q / 2}\right), & \text { if } a^{j}=0,
\end{array}
$$ for x near a^{j}, j=1,2, ···, k .\right.
\]

For $\alpha=q=2, \lambda \equiv(N-2) /(N+2)$ and $Q(x) \equiv 1$, equation (1.1) is originated from finding self-similar solutions of the form

$$
w(t, x)=t^{\frac{2-N}{N+2}} u\left(x t^{-1 / 2}\right)
$$

for the evolution equation

$$
w_{t}-\Delta w=|w|^{4 /(N-2)} w \quad \text { on } \quad(0, \infty) \times \mathbb{R}^{N} .
$$

See [6,9] for a detailed description.
Equation (1.1) with $\alpha=q=2, Q(x) \equiv 1$ has been treated by many authors. See [10,13,14,16] and reference therein. When $q=2, Q(x) \equiv 1$, Catrina et al. [4] have obtained some existence results of the Brezis-Nirenberg type and have showed that the critical dimension of the problem depends on the value of α. Later on, when $Q(x) \equiv 1$, by using Mountain Pass Theorem and Linking Theorem, Furtado et al. [7] have proved that there are a positive solution if $2<q<2^{*}$ and a sign-changing solution if $q=2$. Recently, Furtado et al. [8] have considered the following equation

$$
\begin{equation*}
-\operatorname{div}(K(x) \nabla u)=K(x) f(u)+\lambda K(x)|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N}, \tag{1.2}
\end{equation*}
$$

where $f(u)$ is superlinear and subcritical. In that article, for any given $k \in \mathbb{N}$, they have shown that there exists $\lambda^{*}=\lambda^{*}(k)>0$ such that (1.2) has at least k pairs of solutions for $\lambda \in\left(0, \lambda^{*}(k)\right)$. But they can not give any information about the sign of these solutions. We also refer the interested reader to $[2,3,15,20]$ for various existence results in the case $K(x) \equiv 1$ and $\alpha=2$. As far as we know, we have not seen any multiplicity of positive and sign-changing solutions for problem (1.1) with the fast increasing weights $K(x)$ and $2<q<2^{*}$ in the literature.

The aim of this paper is to use the shape of the graph of $Q(x)$ to prove the existence and multiplicity of both positive and sign-changing solutions for problem (1.1), this property has been firstly observed by Cao and Noussair $[2,3]$. For the problem considered here, some different phenomena may appear since we have an additional weighted function $K(x)$. We will combine the effect of $K(x)$ and the shape of $Q(x)$ to study (1.1). Our main results are:

Theorem 1.1. Assume conditions ($Q 1$), ($Q 2$) and ($Q 3$). If $N \geq 3$ and $\frac{2 N-2}{N-2}<q<2^{*}$, then there exists $\lambda_{0}>0$, such that (1.1) has at least k positive solutions for $\lambda \in\left(0, \lambda_{0}\right)$.

Theorem 1.2. Assume conditions ($Q 1$), ($Q 2$) and ($Q 3$). Then there exists $\lambda_{0}>0$, such that (1.1) has at least k sign-changing solutions, if one of the following statements holds:
(i) $N \geq 4, \frac{2 N-2}{N-2}<q<2^{*}, \lambda \in\left(0, \lambda_{0}\right)$;
(ii) $N=3,5<q<2^{*}, \lambda \in\left(0, \lambda_{0}\right)$.

The following two Theorems consider a different case from the above two Theorems, in which one of the points $a^{1}, a^{2}, \ldots, a^{k}$ is an origin.

https://daneshyari.com/en/article/8899472

Download Persian Version:
https://daneshyari.com/article/8899472

Daneshyari.com

[^0]: * Corresponding author at: College of Mathematics and Computer Science \& FJKLMAA, Fujian Normal University, Qishan Campus, Fuzhou 350108, PR China.

 E-mail addresses: qianxiaotao1984@163.com (X. Qian), jqchen@fjnu.edu.cn (J. Chen).
 ${ }^{1}$ Supported by NNSF of China (No. 11371091, 11501107) and the innovation group of 'Nonlinear analysis and its applications' (No. IRTL1206).

