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Completely linear degeneracy for quasilinear hyperbolic
systems

Yuzhu Wang and Changhua Wei∗

Abstract

In this paper, we introduce a new concept of completely linear degeneracy for
quasilinear hyperbolic systems in several space variables, and then get an interesting
property for multidimensional hyperbolic conservation laws satisfying our new defini-
tion. For applications, we give some examples arising from mathematics and physics
at last.

1 Introduction

Quasilinear hyperbolic systems in several space variables can be described as follows

∂u

∂t
+

m∑
j=1

Aj(u)
∂u

∂xj

= 0, (1.1)

where u = (u1, · · · , un)
T is the unknown vector function of (t, x1, · · · , xm) and Aj(u) (j =

1, · · · ,m) is an n×n matrix with smooth elements ajkl(u) (k, l = 1, · · · , n). The concepts of
linear degeneracy and genuine nonlinearity have been made in the following way (see [24]).
This is a straightforward generalization of the case in one space dimension (see [20]). The
i-th characteristic field of system (1.1) is linearly degenerate, if

∇λi(u, ξ) · ri(u, ξ) ≡ 0, ∀ u ∈ Ω, ∀ ξ ∈ S
m−1; (1.2)

while, it is genuinely nonlinear, if

∇λi(u, ξ) · ri(u, ξ) �= 0, ∀ u ∈ Ω, ∀ ξ ∈ S
m−1, (1.3)

where ξ = (ξ1, · · · , ξm)T ∈ S
m−1, λ1 (u, ξ) , · · · , λn (u, ξ) are n real eigenvalues of A(u, ξ) =∑m

j=1 Aj(u)ξj and {ri (u, ξ)}ni=1 is a complete set of right eigenvectors of A(u, ξ). Here and
throughout this paper, we always assume that A(u, ξ) has n real eigenvalues. However, as is
pointed out in [21], this generalization would exclude a single equation and a system of two
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