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We study the weak Galerkin finite element method for stationary Navier–Stokes 
problem. We propose a weak finite element velocity-pressure space pair that satisfies 
the discrete inf-sup condition. This space pair is then employed to construct a 
stable weak Galerkin finite element scheme without adding any stabilizing term or 
penalty term. We prove a discrete embedding inequality on the weak finite element 
space which, together with the discrete inf-sup condition, enables us to establish the 
unique existence and stability estimates of the discrete velocity and pressure. Then, 
we derive the optimal error estimates for velocity and pressure approximations in 
the H1-norm and L2-norm, respectively. Numerical experiments are provided to 
illustrate the theoretical analysis.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, weak Galerkin (WG) finite element methods have been developed and analyzed for 
solving various partial differential equations [2,3,6–16,18,19]. In general, a WG finite element method can 
be considered as an extension of the standard finite element method where classical derivatives are replaced 
in the variational equation by the weakly defined derivatives on discontinuous weak functions. There are two 
main features in WG methods: (1) the weak derivatives are introduced as distributions for weak functions; 
(2) the weak finite element function uh = {u0

h, u
b
h} is used in which u0

h is totally discontinuous on the 
partition and the component ub

h of uh on element boundary may be independent of the component u0
h of 

uh in the interior of element.
Although many research works have been done on WG methods, to authors’ best knowledge, these works 

are presented for linear problems and there are no WG finite element works for nonlinear problems in the 
existing literatures yet. As a class of emerging finite element methods, it is interesting to see how WG 
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finite element methods can be extended to nonlinear partial differential equations, and this motivates us to 
develop and analyze a WG finite element method for the stationary Navier–Stokes problem.

At present, some stabilized WG finite element methods for Stokes problems [2,10,15,16] have appeared 
in the literature, but these methods are not applicable to Navier–Stokes problem because of the nonlinear 
convection term. In conventional finite element methods for Stokes and Navier–Stokes equations, a stan-
dard requirement for the velocity-pressure space pair is the so-called inf -sup condition. The importance 
of ensuring the inf-sup condition is well understood. Numerical experiments show that the violation of the 
inf-sup condition often leads to nonphysical oscillations of the discrete solutions. In order to circumvent 
the inf-sup condition, all existing WG finite element methods for Stokes problems require the stabilizing 
term and/or penalty term [2,10,15,16]. However, the stabilizing term and/or penalty term will add com-
putational cost and the h−1 penalty factor will worsen the numerical stability for h small in solving the 
discrete linear system. Therefore, it is desirable to develop a WG finite element scheme without adding any 
stabilization/penalty term for incompressible flow.

The WG finite element method for stationary Navier–Stokes problem to be presented in this article is 
in the primary velocity-pressure form. To develop this method, we present a velocity-pressure weak finite 
element space pair Xh ×Mh such that the following discrete inf-sup condition holds:

sup
v∈Xh

(divwv, qh)h
‖∇wv‖h

≥ β‖qh‖, ∀ qh ∈ Mh,

where divw and ∇w are the weak divergence and weak gradient, respectively. In order to treat the nonlinear 
term, we establish a discrete embedding inequality on the weak finite element space. It is our belief that 
this embedding inequality has the potential to be useful in the analysis of WG finite element methods 
for other nonlinear problems. The discrete inf-sup condition and the embedding inequality enable us to 
show the unique existence and stability for the discrete velocity and pressure. Then, we derive the optimal 
error estimates for the velocity approximation in the discrete H1-norm and pressure approximation in the 
L2-norm, respectively. We emphasize that this article is the first to propose and analyze a WG finite element 
method for stationary Navier–Stokes problem and our techniques are also potentially applicable to other 
nonlinear problems.

This paper is organized as follows. In Section 2, we first recall the concepts of weak functions, their 
weak partial derivatives, weak gradient and weak divergence. Then we present a WG finite element scheme 
for the Navier–Stokes equations. Section 3 is devoted to the stability analysis for the discrete solutions. In 
section 4, the optimal error estimates are derived for velocity and pressure approximations, respectively. In 
Section 5, we provide some numerical examples to illustrate our theoretical analysis. Some conclusions are 
given in Section 6.

Throughout this paper, for a non-negative integer m, we adopt the notations Wm,r(D) to denote the 
usual Sobolev spaces on a domain D ⊂ Ω equipped with the norm ‖ · ‖m,r,D and semi-norm | · |m,r,D, and if 
r = 2, we set Wm,r(D) = Hm(D), ‖ · ‖m,r,D = ‖ · ‖m,D. When D = Ω, we omit the index D. The notations 
(·, ·) and ‖ · ‖ denote the inner product and norm in the space L2(Ω), respectively. We will use the letter C
to represent a generic positive constant, independent of the mesh size h.

2. Problem and its weak Galerkin finite element approximation

Consider the stationary Navier–Stokes equations

−ν�u + (u · ∇)u + ∇p = f , in Ω, (1)

divu = 0, in Ω, (2)

u = 0, on ∂Ω, (3)
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