

Simple matrix representations of the orthogonal polynomials for a rational spectral density on the unit circle

Akihiko Inoue ${ }^{\text {a }}$, Yukio Kasahara ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
b Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

A R T I C L E I N F O

Article history:
Received 23 June 2017
Available online xxxx
Submitted by S. Cooper

Keywords:

Orthogonal polynomials on the unit circle
Verblunsky coefficients
Rational spectral density
Seghier's formula

Abstract

In this note, by using a discrete analog of a projection formula introduced by A. Seghier in 1978, we calculate the orthogonal polynomials on the unit circle for a rational spectral density having no zeros there, and derive simple matrix representations of themselves, their squared norms, and the Verblunsky coefficients. © 2018 Published by Elsevier Inc.

1. Introduction

Let μ be a probability measure on the unit circle \mathbb{T} that is supported on an infinite set. By applying the Gram-Schmidt method to the sequence of monomials $1, z, z^{2}, \ldots$ in the Hilbert space $L^{2}(\mu)$ with

$$
(\varphi, \psi)_{\mu}=\int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) \overline{\psi\left(e^{i \theta}\right)} d \mu(\theta), \quad\|\varphi\|_{\mu}=\left(\int_{0}^{2 \pi}\left|\varphi\left(e^{i \theta}\right)\right|^{2} d \mu(\theta)\right)^{1 / 2}
$$

one obtains a sequence of the monic orthogonal polynomials $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots$ with respect to μ, i.e.,

$$
\Phi_{n}(z)=z^{n}+\text { lower order }, \quad\left(\Phi_{n}, \Phi_{n^{\prime}}\right)_{\mu}=0 \quad\left(n \neq n^{\prime}\right) .
$$

Their constant terms $\alpha_{n}=\Phi_{n}(0)$ lie in the open unit disc \mathbb{D} for all $n=1,2, \ldots$. Therefore, μ yields a sequence $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ in \mathbb{D}. Verblunsky's theorem states that every sequence in \mathbb{D} arises in this way from a unique probability measure on \mathbb{T} that is supported on an infinite set, whence α_{n} are called the

[^0]Verblunsky coefficients. (There are several other names such as the Schur parameters.) As an application, the monic orthogonal polynomials are used for studying the prediction problem for a centered, complex-valued stationary time series $\left\{X_{k}\right\}$ with spectral measure μ, i.e.,

$$
\operatorname{Cov}\left(X_{j}, X_{k}\right)=\int_{0}^{2 \pi} e^{i(j-k) \theta} d \mu(\theta) \quad(j, k=0, \pm 1, \pm 2, \ldots)
$$

More precisely, Φ_{n} is a spectral counterpart of the one-step prediction error in the sense that

$$
X_{n}-\hat{X}_{n}=X_{n}-\sum_{k=1}^{n} \phi_{n, k} X_{n-k} \quad \leftrightarrow \quad \Phi_{n}(z)=z^{n}-\sum_{k=1}^{n} \phi_{n, k} z^{n-k}, \quad \operatorname{Var}\left(X_{n}-\hat{X}_{n}\right)=\left\|\Phi_{n}\right\|_{\mu}^{2}
$$

where \hat{X}_{n} is the linear predictor of X_{n} based on $\left\{X_{0}, X_{1}, \ldots, X_{n-1}\right\}$. Since $\phi_{n, n}=-\alpha_{n}$, the Verblunsky coefficients are essentially the same as the partial autocorrelation function $\left\{\phi_{n, n}\right\}$. See Simon [11] for the theory of orthogonal polynomials on the unit circle, and Brockwell-Davis [2] for the prediction problem of stationary time series.

Inoue [3-5], Inoue-Kasahara [6,7] and Bingham et al. [1] have developed explicit representations of the predictor coefficients and prediction error variances, and studied their applications. Taking a different approach, this note presents simple matrix representations of the monic orthogonal polynomials and related quantities for a probability measure of the form $d \mu(\theta)=w\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}$, where w is a rational function of $e^{i \theta}$ satisfying $w\left(e^{i \theta}\right) \neq 0$ on \mathbb{T}. As is well known, the latter can be expressed as

$$
\begin{equation*}
w\left(e^{i \theta}\right)=\frac{\left|P\left(e^{i \theta}\right)\right|^{2}}{\left|Q\left(e^{i \theta}\right)\right|^{2}} \tag{1}
\end{equation*}
$$

with some polynomials P and Q which have no common zeros and satisfy

$$
\begin{equation*}
P(0)>0, \quad Q(0)>0, \quad P(z) \neq 0, \quad Q(z) \neq 0 \quad(z \in \mathbb{D} \cup \mathbb{T}) \tag{2}
\end{equation*}
$$

Such a rational function is important in time series analysis since it is the spectral density of a causal and invertible ARMA (autoregressive-moving average) process, characterized by the difference equation

$$
Q(B) X_{k}=P(B) Z_{k} \quad(k=0, \pm 1, \pm 2, \ldots)
$$

where B is the backward shift operator $\left(B X_{k}=X_{k-1}\right)$ and $\left\{Z_{k}\right\}$ is a white noise $\left(\operatorname{Cov}\left(Z_{j}, Z_{k}\right)=\delta_{j k}\right)$. The matrix representations are derived by calculating Φ_{n} via an analog of a projection formula introduced by Seghier [10], which is explained in Section 2. The representations themselves, including those of the squared norms $\left\|\Phi_{n}\right\|_{\mu}^{2}$ and the Verblunsky coefficients α_{n}, are given in Section 3. Among other results, the representation of α_{n} is particularly simple.

We dedicate this note to Yusuke Nakamura (1992-2016) who discovered a similar matrix representation of the finite predictor for some continuous-time process, in joint work with the first author. It was this discovery that made the latter realize, after his death, the existence of explicit formulas in a simple case of this paper, and thus led us to the present work.

2. Seghier's formula

In his work on the prediction problem for a continuous-time stationary process, Seghier [10] introduced a projection formula which is useful when the process has a rational spectral density. This section is devoted to a brief discussion on its discrete analog and related matters. For details, see Kasahara-Bingham [8].

https://daneshyari.com/en/article/8899584

Download Persian Version:

https://daneshyari.com/article/8899584

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: inoue100@hiroshima-u.ac.jp (A. Inoue), y-kasa@math.sci.hokudai.ac.jp (Y. Kasahara).

