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We study uniaxial solutions of the Euler–Lagrange equations for a Landau–de 
Gennes free energy for nematic liquid crystals, with a fourth order bulk potential, 
with and without elastic anisotropy. These uniaxial solutions are characterised 
by a director and a scalar order parameter. In the elastic isotropic case, we 
show that (i) all uniaxial solutions, with a director field of a certain specified 
symmetry, necessarily have the radial-hedgehog structure modulo an orthogonal 
transformation, (ii) the “escape into third dimension” director cannot correspond 
to a purely uniaxial solution of the Landau–de Gennes Euler–Lagrange equations 
and we do not use artificial assumptions on the scalar order parameter and (iii) we 
use the structure of the Euler–Lagrange equations to exclude non-trivial uniaxial 
solutions with ez as a fixed eigenvector i.e. such uniaxial solutions necessarily have 
a constant eigenframe. In the elastic anisotropic case, we prove that all uniaxial 
solutions of the corresponding “anisotropic” Euler–Lagrange equations, with a 
certain specified symmetry, are strictly of the radial-hedgehog type, i.e. the elastic 
anisotropic case enforces the radial-hedgehog structure (or the degree +1-vortex 
structure) more strongly than the elastic isotropic case and the associated partial 
differential equations are technically far more difficult than in the elastic isotropic 
case.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Nematic liquid crystals are classical examples of mesophases intermediate in physical character between 
conventional solids and liquids [6,20]. Nematics are often viewed as complex liquids with long-range orien-
tational order or distinguished directions of preferred molecular alignment, referred to as directors in the 
literature. The orientational anisotropy of nematics makes them the working material of choice for a range 
of optical devices, notably they form the backbone of the multi-billion dollar liquid crystal display industry.

Continuum theories for nematics are well-established in the literature and we work within the powerful 
Landau–de Gennes (LdG) theory for nematic liquid crystals. The LdG theory describes the nematic phase 
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by a macroscopic order parameter, the Q-tensor order parameter that describes the orientational anisotropy 
in terms of the preferred directions of alignment and “scalar order parameters” that measure the degree of 
order about these directions. Mathematically, the Q-tensor is a symmetric, traceless 3 × 3 matrix, with five 
degrees of freedom [6,20], i.e.

Q ∈ S =
{
Q ∈ M3×3(R) | Q = QT, tr(Q) = 0

}
. (1.1)

A nematic phase is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has two degenerate non-zero eigenvalues 
with a single distinguished eigenvector and (iii) biaxial if Q has three distinct eigenvalues. In particular, if 
Q is uniaxial or isotropic, then

Q ∈ U =
{
s

(
n ⊗ n − I

3

) ∣∣∣∣ s ∈ R, n ∈ S
2
}
, (1.2)

where n is the distinguished eigenvector with the non-degenerate eigenvalue, labelled as the “uniaxial” 
director, s is a scalar order parameter that measures the degree of order about n, and I is the 3 × 3 identity 
matrix [17]. The eigenvalues of the uniaxial Q are 2s

3 , − s
3 , −

s
3 respectively and s = 0 describes a locally 

isotropic point. The uniaxial Q-tensor only has three degrees of freedom and the mathematical analysis of 
uniaxial Q-tensors has strong analogies with Ginzburg–Landau theory, since we can treat uniaxial Q-tensors 
as R3 → R

3 maps [17].
As with most variational theories in materials science, the experimentally observed equilibria are mod-

elled by either global or local minimizers of a LdG energy functional [6,19,20]. The LdG energy typically 
comprises an elastic energy and a bulk potential; the elastic energy penalizes spatial inhomogeneities and 
the bulk potential dictates the isotropic-nematic phase transition as a function of the temperature [19,20]. 
There are several forms of the elastic energy; the Dirichlet energy is referred to as the “isotropic” or “one-
constant” elastic energy and elastic energies with multiple elastic constants are labelled as “anisotropic” 
in the sense that they have different energetic penalties for different characteristic deformations [5]. These 
equilibria are classical solutions of the associated Euler–Lagrange equations, which are a system of five 
elliptic, non-linear partial differential equations for reasonable choices of the elastic constants [5]. We study 
and classify uniaxial solutions with either specified symmetries or certain properties in this paper i.e. can 
we give a complete characterization of uniaxial solutions of the LdG Euler–Lagrange equations for certain 
model problems, under certain restrictions on either the director field or the eigenframe of the uniaxial 
solution? We treat the isotropic and anisotropic cases separately. The classification of all uniaxial solutions 
of the LdG Euler–Lagrange equations is a highly non-trivial analytic question; uniaxial Q-tensors only have 
three degrees of freedom and to date, there are few explicit examples of uniaxial solutions for this highly 
coupled system. Our results are forward steps in this challenging study.

Our computations build on the results in [17] and [15], although both papers focus on the elastic isotropic 
case. In the paper [17], the author derives the governing partial differential equations for the order param-
eter s and three-dimensional director field, n in (1.2) in the one-constant LdG case and studies uniaxial 
minimizers (if they exist) of the corresponding energy functional in a certain asymptotic limit. In [15], the 
author addresses some general questions about the existence of uniaxial solutions for the one-constant LdG 
Euler–Lagrange equations. The author derives an “extra equation” that needs to be satisfied by the director 
in “non-isotropic” regions; this equation heavily constrains uniaxial equilibria. The author further shows 
that if the uniaxial solution is invariant in a given direction, then the uniaxial director is necessarily con-
stant in every connected component of the domain; we refer to such uniaxial solutions as “trivial” uniaxial 
solutions. In [15], the author proves that for the model problem of a spherical droplet with radial boundary 
conditions, the “radial-hedgehog” solution is the unique uniaxial equilibrium for all temperatures, for a 
one-constant elastic energy density. The radial-hedgehog solution is analogous to the degree +1 vortex in 
the Ginzburg–Landau theory for superconductivity [2]; the director field n is simply the radial unit-vector 
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