J. Math. Anal. Appl. ••• (••••) •••-••

Contents lists available at ScienceDirect

YJMAA:22169

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions

Ke Lin^{a,*}, Chunlai Mu^b, Hua Zhong^c

^a College of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, PR China College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China

^c Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

ARTICLE INFO

Article history: Received 3 April 2017 Available online xxxx Submitted by M. Winkler

Keywords: Chemotaxis Boundedness Finite-time blow up ABSTRACT

In this paper we consider the quasilinear chemotaxis system

 $\begin{cases} u_t = \nabla \cdot (D(u)\nabla u) - \chi \nabla \cdot (u\nabla v) + f(u), & x \in \Omega, t > 0, \\ 0 = \Delta v - \mu(t) + u, & x \in \Omega, t > 0, \end{cases}$

with homogeneous Neumann boundary conditions in a bounded domain $\Omega \subset \mathbb{R}^n$ with $n \ge 2$, where $\chi > 0$, $\mu(t) := \frac{1}{|\Omega|} \int_{\Omega} u(x,t) dx$ and $f \in C([0,\infty)) \cap C^1((0,\infty))$ is a logistic source of the form $f(s) = as - bs^{\kappa}$ with $a \ge 0, b > 0, \kappa > 1$ and $s \ge 0$, and the diffusion $D \in C^2([0,\infty))$ is supposed to satisfy

$$D(s) \ge D_0 s^{-m}$$
 for all $s > 0$

with some $D_0 > 0$ and $m \in \mathbb{R}$. Given any b > 0, when the logistic source is strong enough in the sense that

$$\kappa > m+3-rac{4}{n+2} \ \ \mathrm{and} \ \ \kappa > 2,$$

it is shown that for any initial data $u_0 \in C^0(\overline{\Omega})$ and $n \ge 2$ the problem possesses a unique global bounded classical solution. However, when

$$D(s) = D_0 s^{-m}$$
 for all $s > 0$

with $\frac{4}{n} - 1 < m \leq 0$ in the sense that $n \geq 5$, and the effect of logistic source is weaker in the sense that

$$\kappa \in \left(1, \frac{(3-m)n-2}{2n-2}\right),$$

Corresponding author. E-mail address: shuxuelk@126.com (K. Lin).

https://doi.org/10.1016/j.jmaa.2018.04.015 0022-247X/© 2018 Published by Elsevier Inc.

Please cite this article in press as: K. Lin et al., A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.04.015

ARTICLE IN PRESS

K. Lin et al. / J. Math. Anal. Appl. ••• (••••) •••-•••

it is shown that for arbitrary prescribed $M_0 > 0$ there exists initial data $u_0 \in C^{\infty}(\overline{\Omega})$ satisfying $\int_{\Omega} u_0 = M_0$ such that the corresponding solution (u, v) of the system blows up in finite time in a ball $\Omega = B_0(R) \subset \mathbb{R}^n$ with some R > 0. This result extends the blow-up arguments of the Keller–Segel chemotaxis model with logistic cell kinetics in Winkler [39] to more general quasilinear case. Moreover, since there is a gap in the proof of Zheng et al. [46], it also presents modified results for the mistake.

© 2018 Published by Elsevier Inc.

1. Introduction

2

We consider the following quasilinear chemotaxis system with logistic source

$$\begin{cases} u_t = \nabla \cdot (D(u)\nabla u) - \chi \nabla \cdot (u\nabla v) + f(u), & x \in \Omega, t > 0, \\ 0 = \Delta v - \mu(t) + u, & x \in \Omega, t > 0, \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, & x \in \partial\Omega, t > 0, \\ u(x,0) = u_0(x), & x \in \Omega, \\ \int_{\Omega} v(x,t)dx = 0, & t > 0, \end{cases}$$
(1.1)

in a bounded domain $\Omega \subset \mathbb{R}^n (n \geq 2)$ with a given nonnegative smooth function u_0 , where $\chi > 0$ is a fixed parameter. This model involves two variables: the density of cells, denoted by u, the density of chemoattractant, represented by v, the latter being secreted only by cells themselves. The function $\mu(t)$ denotes the time-dependent spatial mean of $u(\cdot, t)$ in the sense that

$$\mu(t) := \frac{1}{|\Omega|} \int_{\Omega} u(x,t) dx \text{ for all } t > 0.$$

$$(1.2)$$

The logistic source $f \in C^0([0,\infty)) \cap C^1((0,\infty))$ fulfills $f(0) \ge 0$ and the diffusion function $D \in C^2([0,\infty))$ satisfies

$$D(s) > 0, \ s \ge 0 \text{ and } D(s) \ge D_0 s^{-m} \text{ for all } s > 0$$
 (1.3)

with some $D_0 > 0$ and $m \in \mathbb{R}$.

The theoretical study of such above processes by means of cross-diffusive parabolic systems of the considered form was initiated by Keller and Segel in their seminal work (see [14]), which can be obtained by letting $D \equiv 1$, $f \equiv 0$, and by replacing the second equation in (1.1) with the parabolic case $v_t = \Delta v - v + u$. It is proved that the solutions never blow up if n = 1 [25] or n = 2 and $\int_{\Omega} u_0 < \frac{4\pi}{\chi}$ [6,24], whereas n = 2and $\int_{\Omega} u_0 > \frac{4\pi}{\chi}$ [10,27] or in higher dimensions $n \ge 3$ [37,40] the solutions may blow up in finite or infinite time. Since the chemicals diffuse much faster than cells, a parabolic–elliptic system was derived for more general nonlinear diffusive function

$$\begin{cases} u_t = \nabla \cdot (D(u)\nabla u) - \chi \nabla \cdot (u\nabla v), & x \in \Omega, \quad t > 0, \\ 0 = \Delta v - v + u, & x \in \Omega, \quad t > 0 \end{cases}$$
(1.4)

with D given by (1.3), where the second equation in (1.4) can be viewed as the following form

$$0 = \Delta v - \mu(t) + u, \quad x \in \Omega, \quad t > 0, \tag{1.5}$$

 $Please \ cite \ this \ article \ in \ press \ as: \ K. \ Lin \ et \ al., \ A \ blow-up \ result \ for \ a \ quasilinear \ chemotaxis \ system \ with \ logistic \ source \ in \ higher \ dimensions, \ J. \ Math. \ Anal. \ Appl. \ (2018), \ https://doi.org/10.1016/j.jmaa.2018.04.015$

Download English Version:

https://daneshyari.com/en/article/8899601

Download Persian Version:

https://daneshyari.com/article/8899601

Daneshyari.com