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In this paper, we present a general comparison theorem for two divided differences 
of a three times differentiable function. This gives a unified treatment for 
(logarithmically) complete monotonicity, monotonicity and inequalities involving 
some special functions including gamma, psi and polygamma functions. As their 
consequences, we not only refine and generalize some important results, but also 
present simple and interesting alternative proofs of certain earlier results.

© 2018 Published by Elsevier Inc.

1. Introduction

The Euler’s gamma and psi (digamma) functions are defined for x > 0 by

Γ (x) =
∞∫
0

e−ttx−1dt, ψ (x) = Γ′ (x)
Γ (x) ,

respectively. The derivatives ψ′, ψ′′, ψ′′′, ... are known as polygamma functions.
Denote by ψn = (−1)n−1

ψ(n) for n ∈ N and ψ−1 = ln Γ, ψ0 = −ψ. Then ψn has some simple properties:

(P1) ψ′
n = −ψn+1 < 0 for n ≥ 0.

(P2) ψ′ is strictly completely monotonic on (0,∞), and so is ψn for n ≥ 0.
(P3) The sequence {ψn+1/ψn}n∈N is strictly increasing and concave.
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(P4) ψn/ψn+1 for n ∈ N is strictly increasing and convex on (0,∞).
(P5) ψn for n ∈ N is log-convex on (0,∞).
(P6) xψn+1/ψn for n ∈ N is strictly decreasing from (0,∞) onto (n, n + 1).
(P7) ψ2

n+1/ (ψnψn+2) is strictly decreasing from (0,∞) onto (n/ (n + 1) , (n + 1) / (n + 2)).

Properties (P3)–(P5) were proved in [41,47], (P6) is due to Alzer [4,5], while (P7) was showed in [41]. More 
properties of polygamma functions can be found in [2–6,41], [8, Theorem 2.7], [21,33,38,40].

Let f : I → R be (strictly) monotonic and a, b ∈ I. Then the so-called integral f -mean of a and b is 
defined as [16]

If (a, b) = f−1

(∫ b

a
f (x) dx
b− a

)
if a �= b and If (a, a) = a.

Elezović and Pečarić [16, Theorem 6] proved that for a, b > 0, Iψ′ (a, b) ≤ Iψ (a, b) and the function 
x �→ Iψ (x + a, x + b) − x is increasing concave with

lim
x→∞

(Iψ (x + a, x + b) − x) = a + b

2 .

And therefore, for a, b > 0 the double inequality

x + Iψ (a, b) < Iψ (x + a, x + b) < x + a + b

2

holds for x ≥ 0. Very recently, Yang and Zheng [47] further showed that for a, b > 0 with a �= b, the 
sequence {Iψn

(a, b)}n≥0 is strictly decreasing with limn→∞ Iψn
(a, b) = min (a, b), and the function x �→

Aψn
(x) = Iψn

(x + a, x + b) − x is strictly increasing from (−min (a, b) ,∞) onto (min (a, b) , (a + b) /2). 
And consequently, the double inequality

x + min (a, b) < Iψn
(x + a, x + b) < x + a + b

2

holds for all x > − min (a, b).
In [3, Theorem 2] Alzer established that for an integer n ≥ 0 and a real number s ∈ (0, 1), the double 

inequality

n!
(x + αn (s))n+1 <

ψn (x + s) − ψn (x + 1)
1 − s

<
n!

(x + βn (s))n+1 (1.1)

holds for all real numbers x > 0 with the best possible constants

αn (s) =
(
ψn (s) − ψn (1)

n! (1 − s)

)−1/(n+1)

and βn (s) = s

2 .

If let s → 1 then inequality (1.1) becomes as

n!
[x + αn (1)]n+1 <

∣∣∣ψ(n) (x + 1)
∣∣∣ < n!

[x + βn (1)]n+1 , (1.2)

where αn (1) =
(
n!/

∣∣ψ(n+1) (1)
∣∣)1/(n+1) and βn (1) = 1/2 are the best constants, which was proved in [21, 

Theorem 1] by Guo, Qi, Zhao and Luo.
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