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obtained for the first few coefficients of the expansion in terms of the generalized
eigenfunctions. This result justifies the classification of threshold types solely by

éi%ﬁg?j;cr operator growth properties of the generalized eigenfunctions. By choosing an appropriate free
Threshold operator a priori possessing no zero eigenvalue or zero resonance we can simplify
Resonance the expansion procedure as much as that on the single discrete half-line.
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1. Introduction

The purpose of this paper is to compute an asymptotic expansion of the resolvent around the threshold 0
for the discrete Schrodinger operator

H=-Ag+V (1.1)

on an infinite, undirected and simple graph. Here we denote the set of vertices by G, and the set of edges
by E¢, hence we are considering the graph (G, Eg). We sometimes call it simply the graph G. For any
function u: G — C the Laplacian —Ag is defined as

(—Agu)la] =Y (ulz] - uly), (1.2)

Y~z

where for any two vertices x,y € G we say x ~ y if {z,y} € Eg. We assume that the graph G consists
of a finite graph K and a finite number of discrete half-lines Lo, « = 1,..., N, jointed together. Special
cases are the discrete full line Z and the discrete half-line N, considered in [10] and [11], respectively. The
perturbation V' can be a general non-local operator, which is assumed to decay at infinity in an appropriate
sense.

The main results in this paper give a complete description in terms of growth properties of the generalized
eigenfunctions for the first few coefficients of the resolvent expansion:

(H + K2)71 = 572G_2 + HilG_l +Go+ kG +---.

More precisely, we prove that G_s is the bound projection or the projection onto the bound eigenspace, and
that G_; is the resonance projection or the projection onto the resonance eigenspace. Explicit expressions
for Gy and G are also computed. It is well known that the coefficients G_5 and G_; directly affect the local

decay rate of the Schrodinger propagator e as t — 400, see [12]. Hence our results reveal a relationship

between the growth rates of the generalized eigenfunctions in space and the local decay rate of e™™H in
time, justifying a classification of threshold types solely by the structure of the generalized eigenspace.
There exists a large literature on threshold resolvent expansions for Schrédinger operators. However, a
complete analysis taking into account all possible generalized threshold eigenfunctions has been obtained
only recently. The first one is in [10] on the discrete full line Z and more recently on the discrete half-line
N in [11]. In these papers the authors implement the expansion scheme of [13,14] in its full generality.
This paper is a generalization of [10,11] to a graph with infinite rays. The strategy is essentially the
same as before. However, in this paper, based on ideas from [4] and [11], we set up a free operator a priori
possessing no zero eigenvalue or zero resonance, and this effectively simplifies the expansion procedure to
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