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In this paper, we establish two new global Carleman estimates for the linear 
stochastic Kuramoto–Sivashinsky equations. The first one is for the backward 
linear stochastic Kuramoto–Sivashinsky equation. Based on this estimate and the 
duality argument, we obtain the null controllability of the forward linear stochastic 
Kuramoto–Sivashinsky equation by three controls, one is an internal control in 
the diffusion term and the others are boundary controls. The second one is for 
the forward linear stochastic Kuramoto–Sivashinsky equation. According to this 
estimate, we obtain a unique continuation property for the forward linear stochastic 
Kuramoto–Sivashinsky equation.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The stochastic Kuramoto–Sivashinsky (KS) equation appears in the study of dynamic roughening in 
sputter-eroded surfaces and, in principle, in any physical system modeled by the deterministic KS equation 
in which the relevance of time-dependent noise as, e.g., fluctuations in a flux or thermal fluctuations, can 
be argued for. In [7] the early and late time dynamics of the erosion model were numerically studied with 
the conclusion that they are the same as those obtained from the stochastic KS equation [15]. In [17], the 
authors confirmed this result by showing analytically that the stochastic KS equation yields the continuum 
description of the erosion model.

In this paper, we establish new global Carleman estimates for the backward linear stochastic KS equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz − (kzxx + zxxxx)dt = (pz + qZ + h)dt + Zdw in Q,

z(0, t) = 0 = z(1, t) in (0, T ),
zx(0, t) = 0 = zx(1, t) in (0, T ),
z(x, T ) = zT (x) in I

(1.1)
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and the forward linear stochastic KS equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz + (kzxx + zxxxx)dt = (pz + f)dt + (qz + g)dw in Q,

z(0, t) = 0 = z(1, t) in (0, T ),
zx(0, t) = 0 = zx(1, t) in (0, T ),
z(x, 0) = z0(x) in I

(1.2)

with suitable coefficients p and q. In (1.1) and (1.2), I = (0, 1), T > 0, Q = I×(0, T ), k > 0 is the antidiffusion 
parameter.

In recent years, many efforts have been devoted to studying the Carleman estimates for stochastic partial 
differential equations:

• stochastic transport equations [24],
• stochastic heat equation [2,29,21,20],
• stochastic wave equation [31],
• stochastic KdV equation [9],
• stochastic Kuramoto–Sivashinsky equations [14],
• stochastic Schrödinger equation [23],
• stochastic fourth order Schrödinger equations [13]
• stochastic Kawahara equation [11]
• · · · · · ·

Through this paper, we make the following assumptions:
(H1) We denote by L2(I) the space of all Lebesgue square integrable functions on I. The inner product 

on L2(I) is

(u, v)L2(I) =
∫
I

uvdx,

for any u, v ∈ L2(I).
Hs(I)(s ≥ 0) are the classical Sobolev spaces of functions on I. The definition of Hs(I) can be found in 

[18].
(H2) Let (Ω, F , {Ft}t≥0, P ) be a complete filtered probability space on which a one-dimensional stan-

dard Brownian motion {w(t)}t≥0 is defined such that {Ft}t≥0 is the natural filtration generated by w(·), 
augmented by all the P -null sets in F . Let H be a Banach space, and let C([0, T ]; H) be the Banach space 
of all H-valued strongly continuous functions defined on [0, T ]. We denote by L2

F(0, T ; H) the Banach space 
consisting of all H-valued {Ft}t≥0-adapted processes X(·) such that E(‖X(·)‖2

L2(0,T ;H)) < ∞, with the 
canonical norm; by L∞

F (0, T ; H) the Banach space consisting of all H-valued {Ft}t≥0-adapted bounded pro-
cesses; and by L2

F (Ω; C([0, T ]; H)) the Banach space consisting of all H-valued {Ft}t≥0-adapted continuous 
processes X(·) such that E(‖X(·)‖2

C([0,T ];H)) < ∞, with the canonical norm.
(H3) Unless otherwise stated, C stands for a generic positive constant whose value can change from line 

to line. If it is essential, the dependence of a constant C on some parameters, say “·”, will be written by 
C(·).

(H4) Let ψ(x) = (x − x0)2 + δ0, where δ0 is a positive constant such that ψ ≥ 3
4‖ψ‖L∞(I) and x0 > 1. 

For any given positive constants λ and μ, we set ρ(x, t) = eμψ(x)−e
3
2 ‖ψ‖L∞(I)μ

t(T−t) , l = λρ, θ = el and ϕ(x, t) =
eμψ(x)

t(T−t) , ∀(x, t) ∈ Q.
(H5) p, q, a, b ∈ L∞

F (0, T ; L∞(I)).
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