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This paper introduces a new generalized polynomial chaos expansion (PCE) 
comprising measure-consistent multivariate orthonormal polynomials in dependent 
random variables. Unlike existing PCEs, whether classical or generalized, no tensor-
product structure is assumed or required. Important mathematical properties of 
the generalized PCE are studied by constructing orthogonal decomposition of 
polynomial spaces, explaining completeness of orthogonal polynomials for prescribed 
assumptions, exploiting whitening transformation for generating orthonormal 
polynomial bases, and demonstrating mean-square convergence to the correct limit. 
Analytical formulae are proposed to calculate the mean and variance of a truncated 
generalized PCE for a general output variable in terms of the expansion coefficients. 
An example derived from a stochastic boundary-value problem illustrates the 
generalized PCE approximation in estimating the statistical properties of an output 
variable for 12 distinct non-product-type probability measures of input variables.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Polynomial chaos expansion (PCE) is an infinite series expansion of an output random variable involving 
orthogonal polynomials in input random variables. Introduced by Wiener [22] for Gaussian input variables, 
followed by a proof of convergence [2], the original PCE, referred to as the classical PCE in this paper, was 
later extended to a generalized PCE [23] to account for non-Gaussian variables. Approximations derived 
from truncated PCE, whether classical or generalized, are commonly used for solving uncertainty quantifi-
cation problems, mostly in the context of solving stochastic partial differential equations [11,21], yielding 
approximate second-moment statistics of an output random variable of interest. However, the existing PCE 
is largely founded on the independence assumption of input variables. The assumption exploits product-type 
probability measures, facilitating construction of the space of multivariate orthogonal polynomials via tensor 
product of the spaces of univariate orthogonal polynomials. In reality, there may exist significant correlation 
or dependence among input variables, impeding or invalidating many stochastic methods, including PCE. 
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The Rosenblatt transformation [18], commonly used for mapping dependent to independent variables, may 
induce very strong nonlinearity to a stochastic response, potentially degrading or even prohibiting conver-
gence of probabilistic solutions [16]. While the works of Soize and Ghanem [20] and Rahman [17] to cope 
with dependent variables are a step in the right direction, they, respectively, employ non-polynomial basis 
unamenable to producing analytical formulae for response statistics and focus strictly on Gaussian vari-
ables. Furthermore, the first of these studies does not address denseness or completeness of basis functions 
or account for infinitely many input variables. Therefore, innovations beyond tensor-product PCEs, capable 
of tackling non-product-type probability measures, are highly desirable.

This study delves into a number of mathematical issues concerning necessary and sufficient conditions 
for the completeness of multivariate orthogonal polynomials; convergence, exactness, and optimal analy-
ses; and approximation quality due to truncation – all associated with a generalized PCE for dependent, 
non-product-type probability measures. Therefore, the results of this paper are new in many aspects. The 
paper is organized as follows. Section 2 defines or discusses mathematical notations and preliminaries. A set 
of assumptions on the input probability measure required by the generalized PCE is explained. A brief 
exposition of multivariate orthogonal polynomials consistent with a general, non-product-type probability 
measure, including their second moment properties, is given in Section 3. The section also describes rel-
evant polynomial spaces and construction of their orthogonal decompositions. The orthogonal basis and 
completeness of multivariate orthogonal polynomials have also been established. Section 4 defines the poly-
nomial moment matrix, resulting in a variety of whitening transformations to produce measure-consistent 
orthonormal polynomials. The statistical properties of both orthogonal and orthonormal polynomials are 
presented. Section 5 formally introduces the generalized PCE for a square-integrable random variable. The 
convergence, exactness, and optimality of the generalized PCE are explained. In the same section, the 
approximation quality of a truncated generalized PCE is discussed. The formulae for the mean and vari-
ance of a truncated generalized PCE are derived, and methods for estimating the expansion coefficients 
are outlined. The section ends with an explanation on how and when the generalized PCE proposed can 
be extended for infinitely many input variables. The results from a simple yet illuminating example are 
reported in Section 6 with supplementary details in Appendix A. Finally, conclusions are drawn in Sec-
tion 7.

2. Input random variables

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞, +∞), and R+
0 := [0, +∞) represent the sets of positive 

integer (natural), non-negative integer, real, and non-negative real numbers, respectively. For a non-zero, 
finite integer N ∈ N, denote by AN ⊆ R

N a bounded or unbounded subdomain of RN . The set of N ×N

real-valued square matrices is denoted by RN×N .
Let (Ω, F , P) be a complete probability space, where Ω is a sample space representing an abstract set 

of elementary events, F is a σ-algebra on Ω, and P : F → [0, 1] is a probability measure. With BN :=
B(AN ) representing the Borel σ-algebra on AN ⊆ R

N , consider an AN -valued input random vector X :=
(X1, . . . , XN )T : (Ω, F) → (AN , BN ), describing the statistical uncertainties in all system parameters of a 
stochastic problem. The input random variables are also referred to as basic random variables. The integer 
N represents the number of input random variables and is referred to as the dimension of the stochastic 
problem.

Denote by FX(x) := P(∩N
i=1{Xi ≤ xi}) the joint distribution function of X, admitting the joint proba-

bility density function fX(x) := ∂NFX(x)/∂x1 · · · ∂xN . Given the abstract probability space (Ω, F , P), the 
image probability space is (AN , BN , fXdx), where AN can be viewed as the image of Ω from the mapping 
X : Ω → A

N , and is also the support of fX(x). Relevant statements and objects in one space have obvious 
counterparts in the other space. Both probability spaces will be used in this paper.

A set of assumptions used or required by the generalized PCE is as follows.
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