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GENERAL CRITERIA FOR CURVES TO BE SIMPLE

MARTIN CHUAQUI

Abstract. We extend previous results for parametrized curves in euclidean
space to be simple. The new condition depends as before on Ahlfors’ Schwarzian
and considers a conformal metric on a given interval and the new diameter.
We derive some applications, among which we find Becker type conditions that
depend on a pre-Schwrazian.

1. Introduction

The purpose of this paper is to extend results in [5], where the use of Sturm
comparison and Ahlfors’ Schwarzian for curves led to sufficient conditions for
parametrized curves in euclidean space to be simple. In many cases, the con-
dition was sharp. By considering a “conformal metric” on an interval, we derive
here a more general condition of the same type that takes into account the modified
diameter of the interval. The theorem fills in the gaps when the former condition
was not optimal. In addition, suitable choices of the conformal factor give rise to
criteria that depend on a pre-Schwarzian derivative, and analogues of criteria for
holomorphic mappings in the disk due to Ahlfors, Becker, and Epstein [2], [3], [9].

We begin with a brief account on Ahlfors’ Schwarzian for curves. In [1] the
author generalizes the Schwarzian to cover f : (a, b) → R

n by separately defining
analogues of the real and imaginary parts Re{Sf}, Im{Sf} of the Schwarzian of a
locally injective mapping f . For parametrized curves with f ′ �= 0 he defined

(1.1) S1f =
〈f ′, f ′′′〉
|f ′|2 − 3
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and

(1.2) S2f =
f ′ ∧ f ′′′

|f ′|2 − 3
〈f ′, f ′′〉
|f ′|4 f ′ ∧ f ′′ ,

respectively. Here,〈 , 〉 denotes the standard inner product, and for �a,�b ∈ R
n, �a∧�b

is the antisymmetric bivector with components (�a ∧ �b)ij = aibj − ajbi and norm

[
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. Ahlfors indicated that he was led to these seemingly esoteric
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