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We mathematically investigate the Rayleigh–Taylor (abbr. RT) instability in the 
compressible viscoelastic fluid in the presence of a uniform gravitational field in 
a bounded domain based on Oldroyd-B model. We first analyze the linearized 
equations around the viscoelastic RT equilibrium solution, and obtain an instability 
condition. Then we construct solutions of the linearized viscoelastic RT problem that 
grow in time in the Sobolev space H3 under an instability condition, thus leading to 
the linear instability. Finally, with the help of the constructed unstable solutions of 
the linearized viscoelastic RT problem and a local well-posedness result of smooth 
solutions to the nonlinear viscoelastic RT problem, we mathematically prove the 
instability of viscoelastic RT (abbr. VRT) problem in the sense of Hadamard.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The equilibrium of the heavier fluid on top of the lighter one under the gravity is unstable, and such 
instability is called the Rayleigh–Taylor (abbr. RT) instability. In this case, the equilibrium state is unstable 
to sustain small disturbances, and this unstable disturbance will grow and lead to a release of potential 
energy, as the heavier fluid moves down under the gravitational force, and the lighter one is displaced 
upwards. This phenomenon was first studied by Rayleigh [28] and then Taylor [29], and is called therefore 
the RT instability. The mathematical proof of RT instability have been extensively established in the sense 
of Hadamard, see [14,15,20,21]. It has been also widely investigated how the RT instability evolves under 
the effects of other physical factors, such as rotation [3], internal surface tension [6,30,32], magnetic fields 
[2,16,18,19,22,23,31] and so on.

Recently, the RT instability in the incompressible viscoelastic fluid have been investigated, see [13,24,25]. 
In this article, we further mathematically prove the RT instability in compressible viscoelastic fluid based 
on the following idea Oldroyd-B model in the presence of a uniform gravitational field:
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⎧⎪⎪⎨
⎪⎪⎩

ρt + div
(
ρv
)

= 0,
ρvt + ρv · ∇v + ∇P − μ1Δv − μ2∇divv = κdiv (ρUUT) − ρge3,

Ut + v · ∇U −∇vU = 0.
(1.1)

Here the unknowns ρ := ρ(t, x), v := v(t, x), and U := U(t, x) denote the density, velocity, and deformation 
tensor (a 3 × 3 matrix valued function), respectively. κ > 0, and g > 0 stand for the elastic coefficient and 
gravitational constant, respectively. e3 := (0, 0, 1)T is the vertical unit vector, and −ρge3 represents the 
gravitational force. μ1 > 0 is the coefficient of shear viscosity and μ2 := ν + μ1/3 with ν being the positive 
bulk viscosity. In this article, the pressure function P := P (ρ) is always assumed to be smooth, positive, 
and strictly increasing with respect to the density ρ. In the system (1.1), the equation (1.1)1 is a continuity 
equation, (1.1)2 describes the balance law of momentum, while (1.1)3 is called the deformation equation. 
The well-posedness problem of the equations (1.1) without the gravity has been widely investigated by many 
authors, see [9–12] for examples.

To investigate the RT instability of the above equations, we shall construct an equilibrium state to the 
equations (1.1). To begin with, we choose a density profile ρ̄ := ρ̄(x3), which is independent of (x1, x2) and 
satisfies

ρ̄ ∈ C4(Ω̄), inf
x∈Ω

ρ̄ > 0, (1.2)

and the RT condition

ρ̄′(x0
3)|x3=x0

3
> 0 for some x0

3 ∈ {x3 | (x1, x2, x3)T ∈ Ω}. (1.3)

The RT condition assures that there is at least a region in which the RT density has larger density with 
increasing height x3, thus leading to the classical RT instability [17].

Then, for given ρ̄ and g, we define

Ū :=

⎛
⎜⎝ ū 0 0

0 ū 0
0 0 ū

⎞
⎟⎠

and

ū ≡ ū(x3) := ±
√

F (P ′(ρ̄)ρ̄′ + gρ̄) + C

κρ̄
, (1.4)

where F (P ′(ρ̄)ρ̄′ + gρ̄) denotes a primitive function of P ′(ρ̄)ρ̄′ + gρ̄ and C is a positive constant satisfying

inf
x∈Ω̄

{F (P ′(ρ̄)ρ̄′ + gρ̄) + C} > 0.

It is easy to see that (1.4) makes sense for a bounded domain Ω, and

P ′(ρ̄)ρ̄′ = κ(ρ̄ū2)′ − gρ̄ (1.5)

where P ′(ρ̄) = P ′(s)|s=ρ̄ and ρ̄′(x3) := d/dx3. Thus, we immediately see that (ρ̄, 0, Ū) is an equilibrium 
solution of (1.1).

Now, we denote the perturbation around the equilibrium state by

� = ρ− ρ̄, v = v − 0, V = U − Ū
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