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Typical realistic models for multiphase flow in heterogeneous formations are complex 
and random, and must incorporate the uncertainties inherent to the mixture pro-
cess. These uncertainties can be modeled using differential equations coefficients, 
such as hydrodynamic dispersivity. In this work, the mathematical model is ex-
pressed in terms of a nonlinear coupled system of stochastic partial differential 
equations; a second order elliptic equation for the pressure, and a hyperbolic-
dominated transport-diffusion equation for the solvent concentration in the mixture. 
Besides, the longitudinal dispersion coefficient is a fuzzy number. New perspective 
on the quantification of uncertainty for parameter estimation problems by means 
of numerical simulations and membership functions is the purpose of this research. 
In this way, a fuzzification of the semiclassical solution numerical approximation 
is built. In this regard, it is proved the continuity of the function that assigns the 
3-tuple comprised by longitudinal dispersion, transverse dispersion, and molecular 
diffusion, to the corresponding value of the semiclassical solution, at a fixed point 
of the domain. The continuity result along with Zadeh’s Extension Principle is ap-
plied to obtain the fuzzification. The relevance of this study resides in the novelty of 
the methodology that considers a model parameter as a fuzzy number, meanwhile, 
it is usually taken as a constant in literature. Other unprecedented result lays in the 
discovery of the link between theoretical concepts and numerical approximations to 
obtain a fuzzification.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

To obtain a precise and detailed knowledge of the fluid flow in heterogeneous porous media phenomenon, 
it is necessary that the system of governing equations incorporates the uncertainties inherent to the mixture 
process. These uncertainties are often modeled using the coefficients of differential equations (porosity, 
permeability, and hydrodynamic dispersivity), which are considered as random variables in relation to the 
spatial position. For this reason, typical realistic models for multiphase flow in heterogeneous formations 
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are expressed in terms of a nonlinear coupled system of stochastic partial differential equations, which has 
a strongly hyperbolic character.

Three laws are fundamental for describing miscible displacement in heterogeneous porous media. One of 
them is the well-known Darcy’s law which is employed to govern the process known as convection, physical 
transport at a macroscopic level. The other is Fick’s law which deals with the process of diffusion of one 
fluid into another. This process is due to the random motion of molecules. The law of conservation of mass 
is the third one.

Consider a bounded domain Ω in R2, the interval J = [0, T ], T > 0, and QT = Ω × J . A model that 
represents the incompressible miscible displacement of a mixture of a solvent, with concentration c, and oil 
in a mean free of gravitational effects, is given by the following system (see [63])

u = −K(x)
μ(c) ∇p, ∇ · u = qI − qP , (1)

φ(x)∂c
∂t

−∇ · (D(u)∇c) + u · ∇c + qIc = q̂I · (2)

The first equation (1) represents the mass conservation of the mixture, and the second one (2) represents 
the mass conservation of the solvent. In general, the concentration equation (2) is a convection-dominated 
parabolic equation with coefficients depending on pressure through the Darcy’s velocity, u = (u1, u2). This 
velocity yields the volumetric convective flow rate of the mixture per unit cross-sectional area. The other 
elements that appear in the system are: K = K(x), x ∈ Ω, the absolute permeability of the rock; μ = μ(c)
the viscosity of the fluid, which depends on the solvent concentration, c = c(x, t), t ∈ J ; the pressure 
gradient, ∇p = ∇p(x); the porosity of the medium, φ; qI and qP represent the sum of injection well source 
terms and the sum of production well sink terms, respectively, both sums are non-negative; q̂I = ĉqI , where 
ĉ is the specified concentration at an injection well and the resident concentration at a producer; D = D(u)
is the diffusion–dispersion tensor, given by

D = D(u) = φdmI + d�
|u|

(
u2

1 u1u2
u1u2 u2

2

)
+ dt

|u|

(
u2

2 −u1u2
−u1u2 u2

1

)
. (3)

In tensor D, the parameters d� and dt are respectively the longitudinal and transverse dispersion coef-
ficients, where d� � dt and dt ≥ 0, and dm > 0 is the molecular diffusion coefficient. In this work, the 
parameter d� is considered as a fuzzy number.

The viscosity rate, also called in the literature as mobility ratio, is given by M = μo/μs, where μo is 
the oil viscosity and μs is the solvent viscosity. The viscosity of the fluid mixture is assumed to obey the 
quarter-power law (see [63]), then we have

μ(c) = {(1 − c) + M1/4c}−4μo.

The function μ is strictly increasing in [0, 1] when M < 1, having μs as a maximum and μo as a minimum. 
When M > 1, the function μ is strictly decreasing in [0, 1] with maximum μo and minimum μs. A sketch of 
the function μ is shown in Fig. 1.

As boundary conditions, it is considered the periphery of the reservoir to be impermeable, assuming 
“no flow” boundary conditions. If we denote by Γ the boundary of Ω, then the boundary conditions are 
summarized as follows:

u · ν = 0, x ∈ Γ, (4)
(−D∇c) · ν = 0, x ∈ Γ, t ∈ J, (5)

where ν is the unit outward normal vector to Γ.
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