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We define an AW ∗-TRO as an off-diagonal corner of an AW ∗-algebra, and show that 
the unit ball of an AW ∗-TRO has an extreme point. In particular, the unit ball of an 
injective operator space has an extreme point, which answers a question raised in [8]
affirmatively. We also show that an AW ∗-TRO (respectively, an injective operator 
space) has an ideal decomposition, that is, it can be decomposed into the direct sum 
of a left ideal, a right ideal, and a two-sided ideal in an AW ∗-algebra (respectively, 
an injective C∗-algebra). In particular, we observe that an AW ∗-TRO, hence an 
injective operator space, has an algebrization which admits a quasi-identity.

© 2018 Elsevier Inc. All rights reserved.

Recall that an operator space X is called a triple system or a ternary ring of operators (TRO for short) if 
there exists a complete isometry ι from X into a C∗-algebra such that ι(x)ι(y)∗ι(z) ∈ ι(X) for all x, y, z ∈ X. 
A theorem of Ruan and Hamana (independently) states that an operator space X is injective if and only 
if it is an off-diagonal corner of an injective C∗-algebra, i.e., there exist an injective C∗-algebra A and 
projections p, q ∈ A (meaning p = p2 = p∗ and q = q2 = q∗) such that X is completely isometric to pAq

(Theorem 4.5 in [14] and Theorem 3.2 (i) in [2]). In particular, an injective operator space is a TRO. Noting 
that an injective C∗-algebra is monotone complete and hence an AW ∗-algebra, the Ruan–Hamana theorem 
motivates the following definition. (The reader is referred to [15] for a modern account of and recent progress 
in monotone complete C∗-algebras and AW ∗-algebras.)

Definition 1. We say that an operator space X is an AW ∗-TRO if there exist an AW ∗-algebra A and 
projections p, q ∈ A such that X is completely isometric to pAq.

Remark 2.

(1) While a different definition of an AW ∗-TRO was given in [12] (Definition 6.2.1), where the definition is 
that the linking C∗-algebra is AW ∗, we think our definition is the right one. For instance, a countably-
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infinite-dimensional column Hilbert space is an injective operator space ([13]) and hence a TRO, but 
its linking C∗-algebra is not unital (and hence not AW ∗), while the space is an AW ∗-TRO using our 
definition. Note also that a W ∗-TRO can have a linking C∗-algebra which is not a W ∗-algebra.

(2) With our definition of an AW ∗-TRO, all Theorems, Corollaries, and Lemmas (excluding the second 
assertion of Lemma 6.2.9) in Section 6.2 of [12] remain to be valid replacing TT ∗ by pAp, T ∗T by qAq, 

and LT =
(
TT ∗ T
T ∗ T ∗T

)
by LT =

(
pAp pAq
qAp qAq

)
(⊆ M2(A)), where A is an AW ∗-algebra, and p, q ∈ A

are projections, and T is an AW ∗-TRO identified with pAq. In addition, instead of Definition 6.3.1 in 
[12], if we define T to be of type I, type II, or type III if A can be chosen to be of type I, type II, or 
type III, respectively, then all Theorems and Lemmas (excluding item 3 of Lemma 6.3.5) in Section 6.3 
of [12] also remain to be valid.

Theorem 3. The unit ball (always assumed to be norm-closed) of an AW ∗-TRO has an extreme point. In 
particular, the unit ball of an injective operator space has an extreme point, which answers a question raised 
in [8] (Question 2) affirmatively.

Proof. Let X be an AW ∗-TRO. We may assume that X = pAq, where A is an AW ∗-algebra and p, q ∈ A
are projections. By the comparison theorem in [3], there exist unique central projections r, t, l ∈ A satisfying 
r + t + l = 1 such that rp ≺ rq, tp ∼ tq, and lp � lq. (Here rp ≺ rq means rp � rq but rp � rq, however, 
0 ≺ 0 is allowed.) That is, there exist partial isometries u, v, w ∈ A such that uu∗ = rp, u∗u ≤ rq, 
vv∗ = tp, v∗v = tq, ww∗ ≤ lp, and w∗w = lq. Let e := u + v + w (∈ pAq), then it is easy to check that 
(p −ee∗)A(q−e∗e) = {0}. Thus by a variation of Kadison’s theorem (Theorem 1 in [4]; see Proposition 1.4.8 
in [11] or Proposition 1.6.5 in [16] for the variation we need here), e is an extreme point of the unit ball of 
pAq. �

From the proof above we obtain “ideal decompositions” for AW ∗-TROs and injective operator spaces 
similar to the ones done for TROs with predual in [7]. The technique we use here is to embed an off-diagonal 
corner into the diagonal corners which is a modification of the technique developed in [1] and is employed 
in [7].

Corollary 4. An AW ∗-TRO (respectively, an injective operator space) can be decomposed into the direct sum 
of TROs XT , XL, and XR:

X = XT

∞
⊕ XL

∞
⊕ XR

so that there is a complete isometry ι from X into an AW ∗-algebra (respectively, an injective C∗-algebra) 
in which ι(XT ), ι(XL), and ι(XR) are a two-sided, left, and right ideal, respectively, and

ι(X) = ι(XT )
∞
⊕ ι(XL)

∞
⊕ ι(XR).

Proof. Let X be an AW ∗-TRO, and assume that X = pAq, where A is an AW ∗-algebra and p, q ∈ A are 
projections. Let r, t, l ∈ pAq as in the proof of Theorem 3, and put XT := tX, XL := lX, and XR := rX, 
then X = XT

∞
⊕ XL

∞
⊕ XR. Let B := pAp 

∞
⊕ qAq which is an AW ∗-algebra since pAp and qAq are so 

by Theorem 2.4 in [10]. For each x ∈ X, let xT := tx, xL := lx, and xR := rx, and define a mapping 
ι : X → B by ι(x) := (xT + xL)e∗ ⊕ e∗xR, where e is as in the proof of Theorem 3. Then clearly ι(X) =
ι(XT ) 

∞
⊕ ι(XL) 

∞
⊕ ι(XR). We claim that ι is a complete isometry. ‖ι(x)‖ = max{‖(xT + xL)e∗‖, ‖e∗xR‖} =

max{‖(xT + xL)e∗e(xT + xL)∗‖1/2, ‖x∗
Ree

∗xR‖1/2} = max{‖xT v
∗vx∗

T + xLw
∗wx∗

L‖1/2, ‖x∗
Ruu

∗xR‖1/2} =
max{‖xtx∗ +xlx∗‖1/2, ‖x∗rx‖1/2} = max{‖(t + l)x‖, ‖rx‖} = ‖(t + l+ r)x‖ = ‖x‖, which shows that ι is an 
isometry. A similar calculation works at each matrix level, which concludes that ι is a complete isometry. 
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