The unit ball of an injective operator space has an extreme point

Masayoshi Kaneda
Department of Mathematics and Natural Sciences, College of Arts and Sciences, American University of Kuwait, P.O. Box 3323, Safat 13034, Kuwait

A R T I C L E I N F O

Article history:

Received 23 September 2017
Available online 14 March 2018
Submitted by R. Timoney

Keywords:

Extreme point
Injective operator space
Ternary ring of operators (TRO)
Ideal decomposition
Quasi-identity
$A W^{*}$-algebra

Abstract

We define an $A W^{*}$-TRO as an off-diagonal corner of an $A W^{*}$-algebra, and show that the unit ball of an $A W^{*}-\mathrm{TRO}$ has an extreme point. In particular, the unit ball of an injective operator space has an extreme point, which answers a question raised in [8] affirmatively. We also show that an $A W^{*}$-TRO (respectively, an injective operator space) has an ideal decomposition, that is, it can be decomposed into the direct sum of a left ideal, a right ideal, and a two-sided ideal in an $A W^{*}$-algebra (respectively, an injective C^{*}-algebra). In particular, we observe that an $A W^{*}-\mathrm{TRO}$, hence an injective operator space, has an algebrization which admits a quasi-identity.

© 2018 Elsevier Inc. All rights reserved.

Recall that an operator space X is called a triple system or a ternary ring of operators ($T R O$ for short) if there exists a complete isometry ι from X into a C^{*}-algebra such that $\iota(x) \iota(y)^{*} \iota(z) \in \iota(X)$ for all $x, y, z \in X$. A theorem of Ruan and Hamana (independently) states that an operator space X is injective if and only if it is an off-diagonal corner of an injective C^{*}-algebra, i.e., there exist an injective C^{*}-algebra \mathcal{A} and projections $p, q \in \mathcal{A}$ (meaning $p=p^{2}=p^{*}$ and $q=q^{2}=q^{*}$) such that X is completely isometric to $p \mathcal{A} q$ (Theorem 4.5 in [14] and Theorem 3.2 (i) in [2]). In particular, an injective operator space is a TRO. Noting that an injective C^{*}-algebra is monotone complete and hence an $A W^{*}$-algebra, the Ruan-Hamana theorem motivates the following definition. (The reader is referred to [15] for a modern account of and recent progress in monotone complete C^{*}-algebras and $A W^{*}$-algebras.)

Definition 1. We say that an operator space X is an $A W^{*}$-TRO if there exist an $A W^{*}$-algebra \mathcal{A} and projections $p, q \in \mathcal{A}$ such that X is completely isometric to $p \mathcal{A} q$.

Remark 2.

(1) While a different definition of an $A W^{*}$-TRO was given in [12] (Definition 6.2.1), where the definition is that the linking C^{*}-algebra is $A W^{*}$, we think our definition is the right one. For instance, a countably-

[^0]infinite-dimensional column Hilbert space is an injective operator space ([13]) and hence a TRO, but its linking C^{*}-algebra is not unital (and hence not $A W^{*}$), while the space is an $A W^{*}$-TRO using our definition. Note also that a W^{*}-TRO can have a linking C^{*}-algebra which is not a W^{*}-algebra.

(2) With our definition of an $A W^{*}$-TRO, all Theorems, Corollaries, and Lemmas (excluding the second assertion of Lemma 6.2.9) in Section 6.2 of [12] remain to be valid replacing $T T^{*}$ by $p \mathcal{A} p, T^{*} T$ by $q \mathcal{A} q$, and $\mathscr{L}_{T}=\left(\begin{array}{cc}T T^{*} & T \\ T^{*} & T^{*} T\end{array}\right)$ by $\mathscr{L}_{T}=\left(\begin{array}{cc}p \mathcal{A} p & p \mathcal{A} q \\ q \mathcal{A} p & q \mathcal{A} q\end{array}\right)\left(\subseteq M_{2}(\mathcal{A})\right)$, where \mathcal{A} is an $A W^{*}$-algebra, and $p, q \in \mathcal{A}$ are projections, and T is an $A W^{*}$-TRO identified with $p \mathcal{A} q$. In addition, instead of Definition 6.3.1 in [12], if we define T to be of type I, type II, or type III if \mathcal{A} can be chosen to be of type I, type II, or type III, respectively, then all Theorems and Lemmas (excluding item 3 of Lemma 6.3.5) in Section 6.3 of [12] also remain to be valid.

Theorem 3. The unit ball (always assumed to be norm-closed) of an $A W^{*}-T R O$ has an extreme point. In particular, the unit ball of an injective operator space has an extreme point, which answers a question raised in [8] (Question 2) affirmatively.

Proof. Let X be an $A W^{*}$-TRO. We may assume that $X=p \mathcal{A} q$, where \mathcal{A} is an $A W^{*}$-algebra and $p, q \in \mathcal{A}$ are projections. By the comparison theorem in [3], there exist unique central projections $r, t, l \in \mathcal{A}$ satisfying $r+t+l=1$ such that $r p \prec r q$, $t p \sim t q$, and $l p \succ l q$. (Here $r p \prec r q$ means $r p \preceq r q$ but $r p \nsim r q$, however, $0 \prec 0$ is allowed.) That is, there exist partial isometries $u, v, w \in \mathcal{A}$ such that $u u^{*}=r p, u^{*} u \leq r q$, $v v^{*}=t p, v^{*} v=t q, w w^{*} \leq l p$, and $w^{*} w=l q$. Let $e:=u+v+w(\in p \mathcal{A} q)$, then it is easy to check that $\left(p-e e^{*}\right) \mathcal{A}\left(q-e^{*} e\right)=\{0\}$. Thus by a variation of Kadison's theorem (Theorem 1 in [4]; see Proposition 1.4.8 in [11] or Proposition 1.6.5 in [16] for the variation we need here), e is an extreme point of the unit ball of $p \mathcal{A} q$.

From the proof above we obtain "ideal decompositions" for $A W^{*}$-TROs and injective operator spaces similar to the ones done for TROs with predual in [7]. The technique we use here is to embed an off-diagonal corner into the diagonal corners which is a modification of the technique developed in [1] and is employed in [7].

Corollary 4. An $A W^{*}-T R O$ (respectively, an injective operator space) can be decomposed into the direct sum of TROs X_{T}, X_{L}, and X_{R} :

$$
X=X_{T} \stackrel{\infty}{\oplus} X_{L} \stackrel{\infty}{\oplus} X_{R}
$$

so that there is a complete isometry ८ from X into an $A W^{*}$-algebra (respectively, an injective C^{*}-algebra) in which $\iota\left(X_{T}\right), \iota\left(X_{L}\right)$, and $\iota\left(X_{R}\right)$ are a two-sided, left, and right ideal, respectively, and

$$
\iota(X)=\iota\left(X_{T}\right) \stackrel{\infty}{\oplus} \iota\left(X_{L}\right) \stackrel{\infty}{\oplus} \iota\left(X_{R}\right) .
$$

Proof. Let X be an $A W^{*}$-TRO, and assume that $X=p \mathcal{A} q$, where \mathcal{A} is an $A W^{*}$-algebra and $p, q \in \mathcal{A}$ are projections. Let $r, t, l \in p \mathcal{A} q$ as in the proof of Theorem 3, and put $X_{T}:=t X, X_{L}:=l X$, and $X_{R}:=r X$, then $X=X_{T} \stackrel{\infty}{\oplus} X_{L} \stackrel{\infty}{\oplus} X_{R}$. Let $\mathcal{B}:=p \mathcal{A} p \stackrel{\infty}{\oplus} q \mathcal{A} q$ which is an $A W^{*}$-algebra since $p \mathcal{A} p$ and $q \mathcal{A} q$ are so by Theorem 2.4 in [10]. For each $x \in X$, let $x_{T}:=t x, x_{L}:=l x$, and $x_{R}:=r x$, and define a mapping $\iota: X \rightarrow \mathcal{B}$ by $\iota(x):=\left(x_{T}+x_{L}\right) e^{*} \oplus e^{*} x_{R}$, where e is as in the proof of Theorem 3. Then clearly $\iota(X)=$ $\iota\left(X_{T}\right) \stackrel{\infty}{\oplus} \iota\left(X_{L}\right) \stackrel{\infty}{\oplus} \iota\left(X_{R}\right)$. We claim that ι is a complete isometry. $\|\iota(x)\|=\max \left\{\left\|\left(x_{T}+x_{L}\right) e^{*}\right\|,\left\|e^{*} x_{R}\right\|\right\}=$ $\max \left\{\left\|\left(x_{T}+x_{L}\right) e^{*} e\left(x_{T}+x_{L}\right)^{*}\right\|^{1 / 2},\left\|x_{R}^{*} e e^{*} x_{R}\right\|^{1 / 2}\right\}=\max \left\{\left\|x_{T} v^{*} v x_{T}^{*}+x_{L} w^{*} w x_{L}^{*}\right\|^{1 / 2},\left\|x_{R}^{*} u u^{*} x_{R}\right\|^{1 / 2}\right\}=$ $\max \left\{\left\|x t x^{*}+x l x^{*}\right\|^{1 / 2},\left\|x^{*} r x\right\|^{1 / 2}\right\}=\max \{\|(t+l) x\|,\|r x\|\}=\|(t+l+r) x\|=\|x\|$, which shows that ι is an isometry. A similar calculation works at each matrix level, which concludes that ι is a complete isometry.

https://daneshyari.com/en/article/8899734

Download Persian Version:

https://daneshyari.com/article/8899734

Daneshyari.com

[^0]: E-mail address: mkaneda@uci.edu.
 https://doi.org/10.1016/j.jmaa.2018.03.028
 0022-247X/© 2018 Elsevier Inc. All rights reserved.

