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ASYMPTOTIC BEHAVIORS OF SOLUTIONS TO A
REACTION-DIFFUSION EQUATION WITH ISOCHRONOUS

NONLINEARITY

AMY POH AI LING AND MASAHIKO SHIMOJO

Abstract. We study the initial boundary value problem for the reaction-diffusion
equation with isochronous nonlinearity. We prove that small solutions become
spatially homogeneous and is subject to the ODE part asymptotically. We also
discuss blow-up of an parabolic system with quadratic nonlinearity having the
origin as an uniform isochronous center.
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1. Introduction

In this paper, we prove that, if the initial value is restricted in some small neighborhood
of the origin, then the solution exists globally in time, and absorbed into a ODE orbit
that is periodic in time. This kind of eventually homogeneous periodic behavior has been
discussed for several evolution systems. Our result can be applied to all the reaction-
diffusion systems having non-degenerate isochronous center of the form:

ut = duΔu− v + P (u, v), vt = dvΔv + u+Q(u, v), x ∈ Ω, t > 0,(1.1)

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,(1.2)

with

(1.3) u(·, 0) = u0, v(·, 0) = v0, x ∈ Ω,

where du and dv are positive constants, P and Q are analytic functions on R
2 starting

in at least second order terms, i.e. such that P (0, 0) = Q(0, 0) = 0 and ∂uP (0, 0) =
∂vP (0, 0) = ∂uQ(0, 0) = ∂vQ(0, 0) = 0, and Ω is a bounded smooth domain in R

N with
N ≥ 1, and ν is the outward unit normal vector. Let the vector field

X = {−V + P (U, V )}∂U + {U +Q(U, V )}∂V
have a commutating analytic vector field of the form

Y = {U +R(U, V )}∂U + {V + S(U, V )}∂V .
More precisely, we assume the commuting property [X ,Y] ≡ 0, where the bracket used
here is the Lie bracket. Under this assumption, the ODE system

(1.4)
dU

dt
= −V + P (U, V )

dV

dt
= U +Q(U, V )

has an isochronous center at the origin, i.e. there exists a neighborhood U ⊂ R
2 of the

origin (U, V ) = (0, 0) such that every orbit in a punctured neighborhood U \ {(0, 0)} is
a cycle surrounding (0, 0), and the period of all such curves are constant 2π. It is well
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