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We study the long-time behavior of spatially periodic solutions of the Navier–Stokes 
equations in the three-dimensional space. The body force is assumed to possess an 
asymptotic expansion or, resp., finite asymptotic approximation, in Sobolev–Gevrey 
spaces, as time tends to infinity, in terms of polynomial and decaying exponential 
functions of time. We establish an asymptotic expansion, or resp., finite asymptotic 
approximation, of the same type for the Leray–Hopf weak solutions. This extends 
previous results that were obtained in the case of potential forces, to the non-
potential force case, where the body force may have different levels of regularity 
and asymptotic approximation. This expansion or approximation, in fact, reveals 
precisely how the structure of the force influences the asymptotic behavior of the 
solutions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We study the Navier–Stokes equations (NSE) for a viscous, incompressible fluid in the three-dimensional 
space, R3. Let x ∈ R

3 and t ∈ R denote the space and time variables, respectively. Let the (kinematic) 
viscosity be denoted by ν > 0, the velocity vector field by u(x, t) ∈ R

3, the pressure by p(x, t) ∈ R, and the 
body force by f(x, t) ∈ R

3. The NSE which describe the fluid’s dynamics are given by

∂u
∂t

+ (u · ∇)u − νΔu = −∇p + f on R
3 × (0,∞),

div u = 0 on R
3 × (0,∞).

(1.1)
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The initial condition is

u(x, 0) = u0(x), (1.2)

where u0(x) is a given divergence-free vector field.
In this paper, we focus on the case when the force f(x, t) and solutions u(x, t), p(x, t) are L-periodic for 

some L > 0. Here, a function ϕ(x) is L-periodic if

ϕ(x + Lej) = ϕ(x) for all x ∈ R
3, j = 1, 2, 3,

where {e1, e2, e3} is the standard basis of R3.
Denote Ω = (−L/2, L/2)3, and let

U(t) = 1
L3

∫
Ω

u(x, t)dx, V(t) =
t∫

0

U(τ)dτ, F(t) = 1
L3

∫
Ω

f(x, t)dx.

Define

v(x, t) = u(x + V(t), t) − U(t), P (x, t) = p(x + V(t), t).

This is a variation of the Galilean transformation.
Integrating the first equation of (1.1) over Ω yields U′(t) = F(t). Then one can verify that v(x, t) and 

P (x, t) are L-periodic and satisfy the following NSE

vt + (v · ∇)v − νΔv = −∇P + g,

div v = 0,

where g(x, t) = f(x + V(t), t) − F(t).
Note, by the spatial periodicity of u, that

∫
Ω

v(x, t)dx =
∫
Ω

u(x + V(t), t)dx −
∫
Ω

u(x, t)dx = 0.

Similarly, g(x, t) is L-periodic and

∫
Ω

g(x, t)dx = 0.

Therefore, we can assume that u(x, t) and f(x, t) in (1.1), for all t ≥ 0, have zero averages over the 
domain Ω. Here, a function ϕ(x) is said to have zero average over Ω if

∫
Ω

ϕ(x)dx = 0. (1.3)

By rescaling the spatial and time variables, we assume throughout, without loss of generality, that L = 2π
and ν = 1.
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