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This paper is concerned with an initial–boundary value problem of the incompress-
ible nematic liquid crystal flows with density-dependent viscosity in a smooth 
bounded domain Ω ⊂ R

3. The global well-posedness of strong solutions with large 
oscillations is established in vacuum, provided ‖∇u0‖L2 +‖Δd0‖L2 is suitably small 
with arbitrary large initial density, which extended the local strong solution by Gao 
et al. [12] to be a global one.
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1. Introduction

We consider the following hydrodynamic system modeling the flow of nematic liquid crystal materials

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,
ρut + ρ(u · ∇)u− div(μ(ρ)∇u) + ∇P = −λdiv(∇d�∇d),
divu = 0,
dt + u · ∇d = γ(Δd + |∇d|2d),

(1.1)

in Ω × (0, ∞), together with the initial and boundary conditions

(ρ, u, d)|t=0 = (ρ0, u0, d0), with |d0| = 1, divu0 = 0, in Ω, (1.2)
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u(x, t) = 0, ∂d

∂ν
(x, t) = 0, on ∂Ω × (0,∞), (1.3)

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω whose unit outward normal is ν. Here u ∈ R

3

represents the velocity field of the flow, d ∈ S2, the unit sphere in R3, represents the macroscopic molecular 
orientation of the liquid crystal material, ρ ∈ R

+ and P ∈ R are scalar functions, respectively, denoting the 
density of the fluid and the pressure arising from the usual assumption of incompressibility divu = 0. The 
positive constants λ and γ represent viscosity of fluid, competition between kinetic and potential energy, 
and microscopic elastic relaxation time respectively. The viscosity coefficient μ = μ(ρ) is a general function 
of density, which is assumed to satisfy

μ ∈ C1[0,∞) and 0 < μ ≤ μ ≤ μ < ∞ on [0,∞), (1.4)

for some positive constant μ, μ. Without loss of generality, both λ and γ are normalized to 1. The symbol 
∇d � ∇d, which exhibits the property of the anisotropy of the material, denotes the n × n matrix whose 
(i, j)-th entry is given by ∂id · ∂jd, for i, j = 1, 2, 3.

System (1.1)–(1.3) is a simplified version of the Ericksen–Leslie model, which reduces to the Ossen–Frank 
model in the static case, for the hydrodynamics of nematic liquid crystals developed by Ericksen [9] and 
Leslie [18] in the 1960’s, but it still retains most important mathematical structures as well as most of 
the essential difficulties of the original Ericksen–Leslie model. Both the full Ericksen–Leslie model and the 
simplified version are the macroscopic continuum description of the time evolution of the materials, under the 
influence of both the flow velocity field u and the microscopic orientation configurations d of rod-like liquid 
crystals. Mathematically, system (1.1)–(1.3) is a strongly coupled system between the nonhomogeneous 
incompressible Navier–Stokes equations and the transported heat flows of harmonic map, and thus, its 
mathematical analysis is full of challenges.

When d is a constant vector and |d| = 1, the system (1.1)–(1.3) reduces to the well-known nonhomo-
geneous incompressible Navier–Stokes equations. In the case that the viscosity μ is a constant and the 
initial density has a uniform positive lower bound, Kazhikov [1,17] established the global existence of weak 
solutions, and proved that there exists a unique local strong solution for arbitrary initial data with global 
existence of large strong solutions in R2. However in R3 the global well-posedness results were obtained only 
for small solutions. These results require relatively high regularity of the density, though. It is worthwhile 
to emphasize that for smooth densities with vacuum states, with the initial compatibility conditions

−μΔu0 + ∇p0 = √
ρ0g and divu0 = 0 in Ω (1.5)

for some (p0, g) ∈ H1 × L2, Cho–Kim [3] proved the existence and uniqueness of local strong solutions in 
bounded domains or the whole space. Furthermore, global strong small solutions were obtained by Craig et 
al. [5]. Subsequently, without the initial compatibility conditions (1.5), Liang [23] proved the local strong 
solutions on the whole two-dimensional space with vacuum as far field density. Lv et al. [26] extended 
this result to global one and obtained some decay estimate of solutions. Recently, with the help of the 
Lagrangian formulation, Danchin–Mucha [6] get the local well-posedness with piecewise constant initial 
density (ρ0 ∈ L∞(R3)). Under additional assumption that the initial velocity is small and the density is 
close enough to a positive constant, they get the unique global solution. Similar results with lower regularity 
can be found in [13,27,2]. In case of density-dependent viscosity, Lions [24, Chapter 2] established the global 
existence of weak solutions to nonhomogeneous Navier–Stokes equations in any space dimensions for the 
initial density allowing vacuum. Cho–Kim [4] used the condition

−div(2μ(ρ0)∇u0) + ∇p0 = √
ρ0g and divu0 = 0 in Ω (1.6)
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