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In the article, we prove that the double inequalities
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hold for all r ∈ (0, 1) if and only if p ≥ π/2 = 1.570796 · · · and q ≤ 89/69 =
1.289855 · · · , where K(r) =

∫ π/2
0 (1 − r2 sin2 t)−1/2dt is the complete elliptic integral 

of the first kind, tanh−1(r) = log[(1 +r)/(1 −r)]/2 is the inverse hyperbolic tangent 
function, r′ =

√
1 − r2, and A(1, r) = (1 + r)/2, G(1, r) = √

r, L(1, r) = (r −
1)/ log r and AGM(1, r) are the arithmetic, geometric, logarithmic and Gaussian 
arithmetic-geometric means of 1 and r, respectively.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For r ∈ (0, 1), Legendre’s complete elliptic integrals K(r) and E(r) [13,14] of the first and second kinds 
are given by

K(r) =
π/2∫
0

dt√
1 − r2 sin2(t)

,
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E(r) =
π/2∫
0

√
1 − r2 sin2(t)dt,

respectively.
The Gaussian arithmetic-geometric mean AGM(a, b) of two positive real numbers a and b is defined as 

the common limit of the sequences {an} and {bn}, which are given by

a0 = a, b0 = b, an+1 = an + bn
2 , bn+1 =

√
anbn.

The Gaussian and Landen identities [7] show that
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)
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for all r ∈ (0, 1), where and in what follows r′ =
√

1 − r2.
It is well known that K(r) and E(r) are the particular cases of the Gaussian hypergeometric function 

[6,29,33,36,44,45,47]
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where (a)0 = 1 for a �= 0, (a)n = a(a + 1)(a + 2) · · · (a + n − 1) = Γ(a + n)/Γ(a) is the shifted factorial 
function and Γ(x) =

∫∞
0 tx−1e−tdt (x > 0) is the gamma function [25,26,52,53,55,58–60]. Indeed,
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The complete elliptic integrals and Gaussian hypergeometric function have many important applications 
in mathematics, physics and engineering. For example, the modulus of the plane Grötzsch ring can be 
expressed in terms of the complete elliptic integral of the first kind, and the complete elliptic integral of the 
second kind gives the formula of the perimeter of an ellipse. Moreover, Ramanujan modular equation and 
continued fraction in number theory are both related to the Gaussian hypergeometric function F (a, b; c; x).

Recently, the bounds for the complete elliptic integrals have attracted the attention of many researchers. 
In particular, many remarkable inequalities and properties for K(r), E(r) and F (a, b; c; x) can be found in 
the literature [3,4,8–12,16–24,27,28,32,35,37–43,46,48,50,51,54,56,57].

Carlson and Vuorinen [15], Vamanamurhty and Vuorinen [34], Qiu and Vamanamurthy [31] and Alzer 
[1] proved that the double inequalities
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hold for all r > 0.
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