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We show that a measure on the real line, that is the image of a log-concave measure 
under a polynomial of degree d, possesses a density from the Nikolskii–Besov class of 
fractional order 1/d. This result is used to prove an estimate for the total variation 
distance between such measures in terms of the Fortet–Mourier distance.
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0. Introduction

Many fundamental problems of stochastic calculus involve investigation of the smoothness properties of 
measures of the form ν = μ ◦f−1, i.e. measures induced by μ-measurable functions f with respect to a given 
measure μ on an infinite-dimensional space (e.g., the distribution of a stochastic process). In this paper we 
study the class of such measures ν induced by polynomials on spaces with logarithmically concave measures. 
Since all Gaussian measures are logarithmically concave, our results also applicable to Gaussian measures 
(e.g., to the Wiener measure). This class of distributions ν is of interest for many applications, because it 
contains typical statistics and because approximation by polynomials is a standard tool in many problems. 
Various properties of measures in the class under consideration have been studied in many works, see [13], 
[11], [14], [18], [28], [29], [32], [33] for the case of Gaussian measures and [1], [7], [8], [16], [26], [31] for the 
case of general logarithmically concave measures.

We recall that Nikolskii–Besov class Bα
1,∞, α ∈ (0, 1), consists of all functions ψ ∈ L1(R) for which there 

is number Cψ such that
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∫
R

|ψ(x + h) − ψ(x)|dx ≤ Cψ|h|α ∀h ∈ R.

Our first main result states that the density of a polynomial image of a log-concave measure always belongs to 
Nikolskii–Besov class B1/d

1,∞, where d is the degree of the polynomial. We also prove the following quantitative 
estimate (Corollary 4.2):

σ
1/d
f

∫
R

|ρf (t + h) − ρf (t)|dt ≤ C(d)|h|1/d ∀h ∈ R,

where ρf is the density of the measure μ ◦ f−1 for a log-concave measure μ and a polynomial f of degree d, 
and σ2

f is the variance of f . We note that even in the Gaussian case this result does not follow from [13]. 
This result is used to estimate the total variation distance between the distributions of polynomials in terms 
of the Fortet–Mourier distance (Corollary 4.4):

‖μ ◦ f−1 − μ ◦ g−1‖TV ≤ C(d, a)‖μ ◦ f−1 − μ ◦ g−1‖1/(1+d)
FM ,

provided that σf , σg ≥ a. This estimate generalizes some recent results from [29], [31] and [13] to the case of 
log-concave measures. Moreover, even in the case of a Gaussian measure the power at the Fortet–Mourier 
distance in our estimate is better in comparison with the similar results from the cited papers.

The paper is organized in the following way. In Section 1 we give necessary definitions and some pre-
liminary results needed in the proofs of the main results. The subsequent three sections contain the proofs 
of our results. An important tool in our approach is the so-called localization technique (Theorem 1.6) 
that enables to reduce certain high-dimensional inequalities to inequalities in low dimensions. This means 
that if we want to obtain a dimension-free estimate for the class of log-concave measures, we can prove a 
low-dimensional estimate and then use the localization technique to make it dimension-free. Let us outline 
some key steps in each section. The main tool of studying smoothness of induced distributions μ ◦ f−1 is 
the classical Malliavin method [25] (see also [10]). The main idea of the method is to verify the estimates 
of the form ∫

ϕ(n)(f)dμ ≤ Cn sup
t

|ϕ(t)|, ∀ϕ ∈ C∞
0 (R)

which yields the existence of the infinitely smooth density of the measure μ ◦ f−1. However, in our case 
the density of a polynomial distribution may not even belong to the first Sobolev class, since it does not 
need to be even bounded (e.g., take the square of a standard normal random variable). So, in Section 2 we 
provide a similar sufficient Malliavin-type condition for the density of a measure on the real line to belong to 
the Nikolskii–Besov class (Lemma 2.1). We also deduce an estimate of the total variation distance in terms 
of the Fortet–Mourier distance for measures with densities from the Nikolskii–Besov class (Lemma 2.3). 
In Section 3 we apply localization technique to verify our Malliavin-type condition from Section 2 for the 
polynomial images of log-concave measures (Theorem 3.5). Note that one of the important assumptions 
of the classical Malliavin method is a certain nondegeneracy condition imposed on the mapping f that 
induces the distribution under consideration. In our case when f is a polynomial, we automatically have 
such a nondegeneracy condition in the form of the Carbery–Wright inequality (Theorem 1.4). Finally, in 
Section 4 we present our main results (Corollaries 4.2, 4.3, 4.4, and 4.5) for log-concave measures on infinite 
dimensional locally convex spaces that follow from the technical result of Theorem 3.5 and an approximation 
argument.

We would like to note that one could try to obtain similar results considering differential operator

Lμu := Δu + ∇ log ρμ · ∇u,
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