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For a system of stationary solutions to a reaction–diffusion equations with small 
diffusion coefficient and nonlinear flux boundary condition we prove that the bulk 
balance law, not only on the domain but on its boundary as well, is a necessary 
condition for formation of internal and boundary layers.
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1. Introduction

A special type of parabolic partial differential equations, the so called reaction–diffusion equations, have 
long been used as mathematical models for many phenomena in physics, biology, chemistry and other fields 
alike.

Of special interest when studying such evolution systems in bounded euclidian domains supplied with 
no-flux boundary condition, are the non-constant stationary solutions. In some situations these spatially 
inhomogeneous solutions are characterized, for small values of a certain parameter, by inducing a partition 
in the domain where, except for a thin set – the so called transition layer region – the solutions are 
approximately constant. In a typical reaction of activator–inhibitor type this kind of solutions – often 
associated with pattern formation – would consist of regions, which may or may not intersect the boundary, 
on each of which the concentration of the activator is almost spatially uniform and the complementary 
regions where the inhibitor would have an almost uniform concentration. For definiteness we sometimes 
refer to these solutions as internal transition solutions.
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Loosing speaking, as this small parameter goes to zero, this one-parameter family of internal transition 
solutions approaches a piecewise constant function which partitions the domain into disjoint connected 
components. On each of these connected components, the limiting function assumes a constant value and 
the curves – or surfaces – separating these regions are called interfaces.

In the presence of nonlinear boundary flow, this situation may occur on the boundary of the domain as 
well, in which case the solutions are called boundary transition solutions. Interesting enough the limiting 
boundary interface may not be the trace of the limiting internal interface meaning that the two limiting 
interfaces, in the interior of the domain and on boundary, may be independent on each other (see [11], e.g., 
for this matter).

Of course it would be interesting to establish simple necessary conditions for existence of internal and 
boundary transition solutions for systems of this type. This is our task for the following elliptic system which 
determines the stationary solutions of the corresponding parabolic problem under non-linear flux boundary:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∇ · (a(x)∇u) + f(x, u,v) = 0, in Ω

∇ · (b(x)∇v) + F(x, u,v) = 0, in Ω

εa(x)∂u
∂ν

= g(x, u,v), on ∂Ω

b(x)∂v
∂ν

= G(x, u,v), on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with C2 boundary, ν the exterior normal vector field on ∂Ω, 
f is a function in C1(Ω × R × Rn), g is a function in C1(∂Ω × R × Rn). In addition, F = (f1, . . . , fn), 
G = (g1, . . . , gn), b = (b1, . . . , bn),

• fj ∈ C1(Ω ×R ×Rn), j = 1, . . . , n,
• gj ∈ C1(∂Ω ×R ×Rn), j = 1, . . . , n,
• a, bj ∈ C2(Ω), j = 1, . . . , n,
• ∇ · (b(x)∇v) = (∇ · (b1∇v1), . . . , ∇ · (bn∇vn)),

• b(x)∂v
∂ν

=
(
b1
∂v1

∂ν
, . . . , bn

∂vn
∂ν

)
,

• ∃ M > 0 : M ≤ a(x), M ≤ bj(x) (j = 1, . . . , n), ∀ x ∈ Ω.

Next we briefly describe our main results. Suppose that a family {(uε, vε)}, 0 < ε ≤ ε0, of solutions 
to (1.1) develops internal and boundary transition layers, as ε → 0, with interfaces S ⊂ Ω and C ⊂ ∂Ω, 
respectively, and suppose further that ∂S = C. Roughly speaking, that is to say that there are continuous 
functions α, β : Ω 
−→ R and α̃, β̃ : ∂Ω 
−→ R such that, as ε → 0, uε converges to α, in the L1-topology, on 
one connected component of Ω \ S and to β on the other, to α̃ on one connected component of ∂Ω \ C and 
to β̃ on the other. Moreover vε −→ v0 uniformly in Ω, for some function v0 to be specified later.

Then, under these assumptions, we prove that necessarily

β(x)∫
α(x)

f(x, ξ,v0(x))dξ = 0, ∀x ∈ S ⊂ Ω

and
β̃(y)∫

α̃(y)

g(y, η,v0(y))dη = 0, ∀ y ∈ C ⊂ ∂Ω.
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