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The paper revisits the classical problem of evaluating f(A) for a real function f
and a matrix A with real spectrum. The evaluation is based on expanding f in 
Chebyshev polynomials, and the focus of the paper is to study the convergence 
rates of these expansions. In particular, we derive bounds on the convergence rates 
which reveal the relation between the smoothness of f and the diagonalizability of 
the matrix A. We present several numerical examples to illustrate our analysis.
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1. Introduction

We revisit the problem of lifting a real function f : R → R to a matrix function f : Mk(R) → Mk(R), 
where Mk(R) is the set of square real matrices of size k× k having real spectrum. When f is a polynomial, 
such lifting is straightforward since addition and powers are well-defined for square matrices. When f is 
not a polynomial, there are several standard methods to define the above-mentioned lifting. If f is analytic 
having a Taylor expansion whose convergence radius is larger than the spectral radius of A, then the Taylor 
expansion f(x) =

∑∞
n=0 αnx

n yields f(A) =
∑∞

n=0 αnA
n. If f is not analytic, it is required that at least 

f ∈ Cm−1, where m is the size of the largest Jordan block of A. This condition allows defining f(A) on each 
of the Jordan blocks of A. This latter approach has several equivalent definitions, see e.g. [10, Chapter 1].

Chebyshev polynomials are ubiquitous in applied mathematics and engineering.1 These polynomials 
arise as solutions of a Sturm–Liouville ODE and are used in numerous approximation methods, ranging 
from classical PDE methods [16] to modern methods for image denoising [18]. Motivated by the favorable 
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1 “Chebyshev polynomials are everywhere dense in numerical analysis”. This quote by Philip Davis and George Forsythe is the 
opening sentence of [16].
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numerical properties of Chebyshev polynomials in representing and approximating scalar functions, we 
rigorously study the use of Chebyshev expansions for matrix functions. The idea of evaluating a matrix 
function by its Chebyshev expansion is not new and has been used in applications before. For example, 
[26] uses Chebyshev expansion in spectral methods for solving PDEs. In this context of solving PDEs, the 
Chebyshev polynomials are also examined as a special case of ultraspherical polynomials [5], and Faber 
polynomials [25]. Expansion in the Faber polynomials (for complex spectra) appears in [19] for matrices. 
Chebyshev polynomials are also widely used for pseudospectral methods, see [27] and reference therein. In 
all of the above papers, one assumes that f is a smooth function. One of the most frequently used analytic 
function is the exponential function, naturally arising in solving differential equations. In [1] Chebyshev 
polynomials are proved to be an effective alternative to Krylov techniques for calculating exp(A)v, for a 
given vector v. Another application of Chebyshev polynomials is in representing the best matrix 2-norm 
approximation for analytic functions, over the space of polynomials of a fixed degree [15]. In [3,24] matrix 
Chebyshev polynomials are used for slicing the spectrum of a matrix in order to extract interior eigenvalues. 
Another kind of spectrum filtering is presented in [18] for the construction of image denoising operators. 
We can also find matrix Chebyshev polynomials in calculating matrix functions of symmetric matrices [7], 
computing square roots of the covariance matrix of Gaussian random fields [4] and facilitating the estimation 
of autoregressive models [20].

1.1. Our contribution

In this paper, we generalize the study of matrix Chebyshev expansions to cases where the matrix is not 
necessarily diagonalizable, and the function is not necessarily analytic. In such cases, there exists a trade-off 
between two factors; “how much” the matrix is far from being diagonalizable, as expressed by the size of 
the largest Jordan block in the Jordan form of the matrix, and “how smooth is the function”. Specifically, as 
the size of the largest Jordan block increases (“less diagonalizable”) the smoothness of the function required 
to guarantee the convergence of the matrix Chebyshev expansion, increases as well.

In the current paper, we mainly focus on examining convergence issues and proving convergence rates. 
The convergence rate of the matrix Chebyshev expansion is crucial for determining how many coefficients 
one has to use to approximate f(A) to a prescribed accuracy using a truncated Chebyshev expansion. Thus, 
the convergence rate directly affects the efficiency of approximation algorithms that use matrix Chebyshev 
expansions.

Chebyshev polynomials are naturally define on [−1, 1], so without loss of generality, we assume that the 
spectrum of A is linearly transformed to this segment using an estimated bound on the spectral radius of A
(for example, by estimating the eigenvalue of A with the largest magnitude). We henceforth assume that 
all eigenvalues of A lie in [−1, 1]. Given this assumption, we divide our analysis into two cases: a case where 
there is no a priori information about the distribution of the eigenvalues over [−1, 1], and a case where 
all non-semisimple eigenvalues are concentrated inside (−1, 1). As expected, the latter case implies fewer 
restrictions on the smoothness of the function. In particular, if we denote by m the size of the largest Jordan 
block of A. Then, the convergence of the matrix Chebyshev expansion is guaranteed in the first case for any 
f ∈ C2m−2 where f (2m−1) is of bounded variation. In the second case, it is guaranteed for any f ∈ Cm−1

where f (m) is of bounded variation. As for convergence rates, we summarize our results for the different 
cases in Table 1. Each row in the table presents the requirements, from both the matrix and the function, 
so that an expansion of length N has an error bound of cN−� (� > 1). The constant c is independent of N
and � but does depend on the factors specified in the ‘Remarks’ column. We note two properties from the 
table. First, for matrices with a concentrated spectrum, the smoothness assumptions on f are weaker than 
in the general case. Second, one can guarantee a constant which is independent of the size of the matrix 
by imposing additional regularity on the function f . Further conclusions and their proofs appear in the 
text.
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