

Singular Hamiltonian system with several spectral parameters

Ekin Uğurlu
Çankaya University, Faculty of Arts and Sciences, Department of Mathematics, Balgat, 06530 Ankara, Turkey

```
A R T I C L E I N F O
```


Article history:

Received 22 May 2017
Available online 2 February 2018
Submitted by J. Shi

Keywords:

Hamiltonian system
Multiparameter eigenvalue problem
Weyl theory
Tensor product

Abstract

In this paper, the Weyl-Titchmarsh theory has been constructed for the singular 2 n -dimensional (even order) Hamiltonian system with several spectral parameters. In particular, we consider that the left end point of the interval is regular and the right end point of the interval is singular for the Hamiltonian system with several parameters. Using the nested circles approach, we prove that at least n-linearly independent solutions are squarly integrable with respect to some matrix functions. © 2018 Elsevier Inc. All rights reserved.

1. Introduction

Differential equations with many spectral parameters can be handled on a single interval, as well as on the product of many intervals with appropriate boundary conditions. Such problems are called multiparameter eigenvalue problems. If the problem is constructed with many equations, then the solution will be the product of each solution of the corresponding differential equation. Regular multiparameter eigenvalue problems can be found in, for example, [2-7,29-31]. Moreover, some singular problems have been studied in $[3,11,14,15$, 20].

In 1973, Sleeman [28] investigated the following singular second order differential equations

$$
\begin{equation*}
-\frac{d^{2} y_{r}}{d x_{r}^{2}}+\sum_{s=1}^{k}\left\{p_{r s}\left(x_{r}\right) \lambda_{r}+q_{r}\left(x_{r}\right)\right\} y_{r}\left(x_{r}\right)=0, x_{r} \in\left[a_{r}, b_{r}\right), \tag{1.1}
\end{equation*}
$$

where $r=1, \ldots, k, a_{r}$ is the regular point and b_{r} is the singular point for the r th differential equation in (1.1), $p_{r s}\left(x_{r}\right), q_{r}\left(x_{r}\right)$ are real-valued and continuous functions on $\left[a_{r}, b_{r}\right)$, $\operatorname{det}\left\{p_{r s}\left(x_{r}\right)\right\}_{r, s=1}^{k}>0$ for all $\left(x_{1}, \ldots, x_{k}\right) \in\left(a_{1}, b_{1}\right) \times \ldots \times\left(a_{k}, b_{k}\right)$, and λ_{s} are the spectral parameters, and generalized the results of Weyl [33] obtained for a single singular second order differential equation with a single spectral parameter given in (1.1). In fact, Sleeman firstly handled the equation

[^0]\[

$$
\begin{equation*}
-\frac{d^{2} y}{d x^{2}}+\left\{\lambda_{1} p_{1}(x)+\lambda_{2} p_{2}(x)+q(x)\right\} y=0, x \in[a, b), \tag{1.2}
\end{equation*}
$$

\]

where a is the regular point and b is the singular point for (1.2). After some modifications he considered the problem (1.2) as

$$
\begin{equation*}
-\frac{1}{\rho(x)} \frac{d^{2} y}{d x^{2}}+\left\{\lambda_{1} s_{1}(x)+\lambda_{2} s_{2}(x)+t(x)\right\} y=0, x \in[a, b) \tag{1.3}
\end{equation*}
$$

where

$$
\rho(x)=\epsilon\left[\alpha_{1} p_{1}(x)+\alpha_{2} p_{2}(x)\right]>0, s_{k}(x)=\frac{\alpha_{k} p_{k}(x)}{\rho(x)}, t(x)=\frac{q(x)}{\rho(x)},
$$

$k=1,2, \epsilon= \pm 1, \alpha_{k}$ are some real numbers. Reformulation (1.3) introduce some symmetry and provides some flexibility in the analysis. Then he proved that the solution

$$
\psi\left(x ; \lambda_{1}, \lambda_{2}\right)=\phi\left(x ; \lambda_{1}, \lambda_{2}\right) M\left(b ; \lambda_{1}, \lambda_{2}\right)+\theta\left(x ; \lambda_{1}, \lambda_{2}\right)
$$

of the equation (1.3) satisfies the inequality

$$
\left.\left|\operatorname{Im} \int_{a}^{b}\right| \psi\right|^{2}\left(\lambda_{1} s_{1}+\lambda_{2} s_{2}\right) \rho(x) d x \mid<\infty,
$$

where ϕ and θ satisfy the following initial conditions

$$
\begin{array}{cl}
\phi\left(a ; \lambda_{1}, \lambda_{2}\right)=\sin \alpha, & \phi^{\prime}\left(a ; \lambda_{1}, \lambda_{2}\right)=-\cos \alpha, \\
\theta\left(a ; \lambda_{1}, \lambda_{2}\right)=\cos \alpha, & \theta^{\prime}\left(a ; \lambda_{1}, \lambda_{2}\right)=\sin \alpha,
\end{array}
$$

$\alpha \in[0, \pi)$ and $\operatorname{Im}\left(\lambda_{1} s_{1}+\lambda_{2} s_{2}\right)$ is of one sign and non-zero for all $x \in[a, b)$. Here $M\left(b ; \lambda_{1}, \lambda_{2}\right)$ is a point which is inside all of the circles $C_{b}\left(\lambda_{1}, \lambda_{2}\right)$ or on a circle $C_{b}\left(\lambda_{1}, \lambda_{2}\right)$. The radius of $C_{b}\left(\lambda_{1}, \lambda_{2}\right)$ is described by

$$
r_{b}\left(\lambda_{1}, \lambda_{2}\right)=-\frac{1}{2}\left\{\int_{a}^{b} \rho\left(\operatorname{Im} \lambda_{1} s_{1}+\operatorname{Im} \lambda_{2} s_{2}\right)|\phi|^{2} d x\right\}^{-1}
$$

and may be zero in the limit-point case. Moreover, Sleeman gave some examples to show that although

$$
\int_{a}^{b} \rho\left(\operatorname{Im} \lambda_{1} s_{1}+\operatorname{Im} \lambda_{2} s_{2}\right)|\phi|^{2} d x=\infty
$$

it may happen that

$$
\int_{a}^{b} \rho|\phi|^{2} d x<\infty,
$$

and this is still a limit-point situation. Note that Sims in his work on nonselfadjoint one-parameter problems gave two examples which substantiate this situation [27]. Consequently, Sleeman obtained the following cases under the consideration that $\operatorname{Im}\left(\lambda_{1} s_{1}+\lambda_{2} s_{2}\right)$ is of one sign and non-zero for all $x \in[a, b)$:

https://daneshyari.com/en/article/8899908

Download Persian Version:

https://daneshyari.com/article/8899908

Daneshyari.com

[^0]: E-mail address: ekinugurlu@cankaya.edu.tr.
 https://doi.org/10.1016/j.jmaa.2018.01.028
 0022-247X/® 2018 Elsevier Inc. All rights reserved.

