Upper semicontinuity of the pullback attractors of non-autonomous damped wave equations with terms concentrating on the boundary

Gleiciane S. Aragão ${ }^{\text {a,1 }}$, Flank D.M. Bezerra ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, 09913-030 Diadema, SP, Brazil
b Departamento de Matemática, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil

A R T I C L E I N F O

Article history:

Received 11 May 2017
Available online xxxx
Submitted by K. Nishihara
Keywords:
Pullback attractor
Wave equation
Regularity
Non-autonomous
Concentrating terms

Abstract

In this paper we analyze the asymptotic behavior of the pullback attractors of a non-autonomous damped wave equation when some reaction terms are concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary as a parameter ε goes to zero. We prove a result of regularity of the pullback attractors and that this family of attractors is upper semicontinuous at $\varepsilon=0$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we analyze the asymptotic behavior of the pullback attractors of a non-autonomous damped wave equation when some reaction terms are concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary as a parameter ε goes to zero.

To describe the problem, let Ω be an open bounded smooth set in \mathbb{R}^{3} with a smooth boundary $\Gamma=\partial \Omega$. We define the strip of width ε and base $\partial \Omega$ as

$$
\omega_{\varepsilon}=\{x-\sigma \vec{n}(x): x \in \Gamma \text { and } \sigma \in[0, \varepsilon)\},
$$

for sufficiently small ε, say $0<\varepsilon \leqslant \varepsilon_{0}$, where $\vec{n}(x)$ denotes the outward normal vector at $x \in \Gamma$. We note that the set ω_{ε} has Lebesgue measure $\left|\omega_{\varepsilon}\right|=O(\varepsilon)$ with $\left|\omega_{\varepsilon}\right| \leqslant k|\Gamma| \varepsilon$, for some $k>0$ independent of ε, and that for small ε, the set ω_{ε} is a neighborhood of Γ in $\bar{\Omega}$, that collapses to the boundary when the parameter ε goes to zero (see Fig. 1).

[^0]https://doi.org/10.1016/j.jmaa.2017.12.047
0022-247X/© 2017 Elsevier Inc. All rights reserved.

Fig. 1. The set ω_{ϵ}.
We are interested in the behavior, for small ε, of the solutions of the non-autonomous damped wave equation with concentrated terms given by

$$
\begin{cases}u_{t t}^{\varepsilon}-\operatorname{div}\left(a(x) \nabla u^{\varepsilon}\right)+u^{\varepsilon}+\beta(t) u_{t}^{\varepsilon}=f\left(u^{\varepsilon}\right)+\frac{1}{\varepsilon} \chi_{\omega_{\varepsilon}} g\left(u^{\varepsilon}\right) & \text { in } \Omega \times(\tau,+\infty) \tag{1.1}\\ a(x) \frac{\partial u^{\varepsilon}}{\partial \vec{n}}=0 & \text { on } \Gamma \times(\tau,+\infty), \\ u^{\varepsilon}(\tau)=u_{0} \in H^{1}(\Omega), \quad u_{t}^{\varepsilon}(\tau)=v_{0} \in L^{2}(\Omega) & \end{cases}
$$

where $a \in \mathcal{C}^{1}(\bar{\Omega})$ with

$$
\begin{equation*}
0<a_{0} \leqslant a(x) \leqslant a_{1}, \quad \forall x \in \bar{\Omega}, \tag{1.2}
\end{equation*}
$$

for fixed constants $a_{0}, a_{1}>0$, and $\chi_{\omega_{\varepsilon}}$ denotes the characteristic function of the set ω_{ε}. We refer to $\frac{1}{\varepsilon} \chi_{\omega_{\varepsilon}} g\left(u^{\varepsilon}\right)$ as the concentrating reaction in ω_{ε}. We assume that $\beta: \mathbb{R} \rightarrow \mathbb{R}$ is bounded, globally Lipschitz, and

$$
\begin{equation*}
\beta_{0} \leqslant \beta(t) \leqslant \beta_{1}, \quad \forall t \in \mathbb{R}, \tag{1.3}
\end{equation*}
$$

for fixed constants $\beta_{0}, \beta_{1}>0$ (the assumption that β is globally Lipschitz continuity can be weakened to uniform continuity on \mathbb{R} and continuous differentiability).

We take $f, g: \mathbb{R} \rightarrow \mathbb{R}$ to be \mathcal{C}^{2} and assume that it satisfies the growth estimates

$$
\begin{equation*}
\left|j^{\prime}(s)\right| \leqslant c\left(1+|s|^{\rho_{j}}\right), \quad \forall s \in \mathbb{R}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|j\left(s_{1}\right)-j\left(s_{2}\right)\right| \leqslant c\left|s_{1}-s_{2}\right|\left(1+\left|s_{1}\right|^{\rho_{j}}+\left|s_{2}\right|^{\rho_{j}}\right), \quad \forall s_{1}, s_{2} \in \mathbb{R} \tag{1.5}
\end{equation*}
$$

with $j=f$ or $j=g$ and exponents ρ_{f} and ρ_{g}, respectively, such that $\rho_{f} \leqslant 2$ and $\rho_{g} \leqslant 1$. We note that the estimate (1.4) implies (1.5).

Moreover, we assume the growth estimate

$$
\begin{equation*}
\left|j^{\prime \prime}(s)\right| \leqslant c, \quad \forall s \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

also we assume that

$$
\begin{equation*}
\limsup _{|s| \rightarrow+\infty} \frac{j(s)}{s} \leqslant 0 \tag{1.7}
\end{equation*}
$$

with $j=f$ or $j=g$. We note that (1.7) is equivalent to saying that for any $\gamma>0$ there exists $c_{\gamma}>0$ such that

https://daneshyari.com/en/article/8899928

Download Persian Version:

https://daneshyari.com/article/8899928

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gleiciane.aragao@unifesp.br (G.S. Aragão), flank@mat.ufpb.br (F.D.M. Bezerra).
 ${ }^{1}$ Partially supported by CNPq 475146/2013-1, Brazil.

