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WEIGHTED FOURIER FRAMES ON SELF-AFFINE MEASURES
DORIN ERVIN DUTKAY AND RAJITHA RANASINGHE

ABsTRACT. Continuing the ideas from our previous paper [8], we construct Parseval frames
of weighted exponential functions for self-affine measures.
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1. INTRODUCTION

A probability measure p on R is called spectral if there exists a sequence of exponential
functions which form an orthonormal basis for L?(u). Of course, the main example is the
Lebesgue measure on the unit interval with the classical Fourier series. In 1998, Jorgensen
and Pedersen [10] constructed the first example of a singular, non-atomic spectral measure,
based on a Cantor set with scale 4. Since then, many other examples of spectral singular
measures have been constructed (see e.g., [14, 11, 3, 4]), most of them are based on affine
iterated function systems (see Definition 1.1). In the same paper, Jorgensen and Pedersen
showed that the Hausdorff measure on the Middle Third Cantor set is not spectral and
Strichartz [14] posed the question whether there are any frames of exponential functions for
the Middle Third Cantor set. As far as we know, this question is still open.

In search of a frame for the Middle Third Cantor set, in [12], Picioroaga and Weber
introduced an interesting idea for the construction of weighted exponential frames (also
called weighted Fourier frames) for the self-affine measures, in particular for the Cantor set
Cy in Jorgensen and Pedersen’s example. The word “weighted” means that the exponential
function is multiplied by a constant. The basic idea is to use Cuntz algebras to construct an
orthonormal set for a dilation of the Hilbert space of the fractal measure, which then projects
into a Parseval frame of weighted exponential functions. In [8], the authors generalized the
aforementioned idea of Picioroaga and Weber to construct Parseval Fourier frames for self-
affine measures (see Definition 1.1).
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