Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Localization and compactness of operators on Fock spaces

Zhangjian Hu^{a,1}, Xiaofen Lv^{a,*,1}, Brett D. Wick^{b,2}

^a Department of Mathematics, Huzhou University, Huzhou, Zhejiang, 313000, China
^b Department of Mathematics, Washington University – St. Louis, One Brookings Drive, St. Louis, MO 63110, USA

ARTICLE INFO

Article history: Received 27 October 2017 Available online 19 December 2017 Submitted by J. Xiao

Keywords: Fock space Weakly localized operator Compactness

ABSTRACT

For $0 , let <math>F_{\varphi}^{p}$ be the Fock space induced by a weight function φ satisfying $dd^{c}\varphi \simeq \omega_{0}$. In this paper, given $p \in (0, 1]$ we introduce the concept of weakly localized operators on F_{φ}^{p} , we characterize the compact operators in the algebra generated by weakly localized operators. As an application, for 0 we prove that an operator <math>T in the algebra generated by bounded Toeplitz operators with BMO symbols is compact on F_{φ}^{p} if and only if its Berezin transform satisfies certain vanishing property at ∞ . In the classical Fock space, we extend the Axler–Zheng condition on linear operators T, which ensures T is compact on F_{α}^{p} for all possible 0 .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $H(\mathbb{C}^n)$ be the collection of all entire functions on \mathbb{C}^n , and let $\omega_0 = dd^c |z|^2$ be the Euclidean Kähler form on \mathbb{C}^n , where $d^c = \frac{\sqrt{-1}}{4}(\overline{\partial} - \partial)$. Set B(z, r) to be the Euclidean ball in \mathbb{C}^n with center z and radius r, and $B(z, r)^c = \mathbb{C}^n \setminus B(z, r)$. Throughout the paper, we assume that $\varphi \in C^2(\mathbb{C}^n)$ is real-valued and there are two positive numbers M_1, M_2 such that

$$M_1\omega_0 \le dd^c \varphi \le M_2\omega_0 \tag{1.1}$$

in the sense of currents. The expression (1.1) will be denoted as $dd^c \varphi \simeq \omega_0$. Given 0 and a positive $Borel measure <math>\mu$ on \mathbb{C}^n , let $L^p_{\omega}(\mu)$ be the space defined by

$$L^p_{\varphi}(\mu) = \left\{ f \text{ is } \mu \text{-measurable on } \mathbb{C}^n : f(\cdot)e^{-\varphi(\cdot)} \in L^p(\mathbb{C}^n, d\mu) \right\}.$$

* Corresponding author.

E-mail addresses: huzj@zjhu.edu.cn (Z. Hu), lvxf@zjhu.edu.cn (X. Lv), wick@math.wustl.edu (B.D. Wick).

 $^{^{1}}$ This research is partially supported by the National Natural Science Foundation of China (11601149, 11771139, 11571105), Natural Science Foundation of Zhejiang Province (LY15A010014).

 $^{^2\,}$ Research supported in part by a National Science Foundation DMS grant #0955432.

https://doi.org/10.1016/j.jmaa.2017.12.046

⁰⁰²²⁻²⁴⁷X/© 2017 Elsevier Inc. All rights reserved.

When $d\mu = dV$, the Lebesgue measure on \mathbb{C}^n , we write L^p_{ω} for $L^p_{\omega}(\mu)$ and set

$$||f||_{p,\varphi} = \left(\int_{\mathbb{C}^n} \left| f(z) e^{-\varphi(z)} \right|^p dV(z) \right)^{\frac{1}{p}}.$$

For $0 the Fock space <math>F^p_{\varphi}$ is defined as $F^p_{\varphi} = L^p_{\varphi} \cap H(\mathbb{C}^n)$, and

$$F_{\varphi}^{\infty} = \left\{ f \in H(\mathbb{C}^n) : \|f\|_{\infty,\varphi} = \sup_{z \in \mathbb{C}^n} |f(z)| e^{-\varphi(z)} < \infty \right\}.$$

 F_{φ}^{p} is a Banach space with norm $\|\cdot\|_{p,\varphi}$ when $1 \leq p \leq \infty$ and F_{φ}^{p} is a Fréchet space with distance $\rho(f,g) = \|f-g\|_{p,\varphi}^{p}$ if $0 . The typical model of <math>\varphi$ is $\varphi(z) = \frac{\alpha}{2}|z|^{2}$ with $\alpha > 0$, which induces the classical Fock space. For this particular special weight φ , F_{φ}^{p} and $\|\cdot\|_{p,\varphi}$ will be written as F_{α}^{p} and $\|\cdot\|_{p,\alpha}$, respectively. The space F_{α}^{p} has been studied by many authors, see [2,5,7,18–21] and the references therein. Another special case is with $\varphi(z) = \frac{\alpha}{2}|z|^{2} - \frac{m}{2}\ln(A+|z|^{2})$ with suitable A > 0, and then F_{φ}^{p} is the Fock–Sobolev space $F_{\alpha}^{p,m}$ studied in [3,4].

It is well-known that F_{φ}^2 is a Hilbert space with inner product

$$\langle f,g \rangle_{F^2_{\varphi}} = \int_{\mathbb{C}^n} f(z) \overline{g(z)} e^{-2\varphi(z)} dV(z).$$

Given $z, w \in \mathbb{C}^n$, the reproducing kernel of F_{φ}^2 will be denoted by $K_z(w) = K(w, z)$. We write $k_z = \frac{K_z}{\|K_z\|_{2,\varphi}}$ to denote the normalized reproducing kernel. Given some bounded linear operator T on F_{φ}^p , the Berezin transform of T is well defined as

$$T(z) = \langle Tk_z, k_z \rangle_{F^2_{(a)}}$$

since $Tk_z \in F_{\varphi}^p \subset F_{\varphi}^\infty$ and $k_z \in F_{\varphi}^1$. Set P to be the projection from L_{φ}^2 to F_{φ}^2 , that is

$$Pf(z) = \int_{\mathbb{C}^n} f(w) K(z, w) e^{-2\varphi(w)} dV(w) \quad \text{ for } f \in L^2_{\varphi}.$$

For a complex Borel measure μ on \mathbb{C}^n and $f \in F^p_{\varphi}$, we define the Toeplitz operator T_{μ} to be

$$T_{\mu}f(z) = \int_{\mathbb{C}^n} f(w)K(z,w)e^{-2\varphi(w)}d\mu(w).$$

If $d\mu = gdV$, for short, we will use T_g to stand for the induced Toeplitz operator and will use that $\tilde{g} = \widetilde{T_g}$.

In the case of Fock spaces F_{α}^2 , fixed g bounded on \mathbb{C}^n , $|\langle T_g k_z, k_w \rangle|$ as a function of (z, w) decays very fast off the diagonal of $\mathbb{C}^n \times \mathbb{C}^n$, see [20, Proposition 4.1]. From this point of view, Xia and Zheng in [20] introduced the notion of "sufficiently localized" operators on F_{α}^2 which include the algebra generated by Toeplitz operators with bounded symbols, and they proved that, if T is in the C*-algebra generated by the class of sufficiently localized operators, T is compact on F_{α}^2 if and only if its Berezin transform tends to zero when z goes to infinity. In [10], Isralowitz extended [20] to the generalized Fock space F_{φ}^2 with $dd^c \varphi \simeq \omega_0$. Isralowitz, Mitkovski and the third author extended Xia and Zheng's idea further in [11] to what they called "weakly localized" operators on F_{φ}^p with 1 . They showed that, if T is in the C*-algebra generated $by the class of weakly localized operators, T is compact on <math>F_{\varphi}^p$ if and only if its Berezin transform shares Download English Version:

https://daneshyari.com/en/article/8899960

Download Persian Version:

https://daneshyari.com/article/8899960

Daneshyari.com