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ON THE CONJECTURE OF WOOD AND PROJECTIVE

HOMOGENEITY

J P. BOROŃSKI AND M. SMITH

Abstract. In 2005 Kawamura and Rambla, independently, constructed a
metric counterexample to Wood’s Conjecture from 1982. We exhibit a new

nonmetric counterexample of a space L̂, such that C0(L̂,C) is almost tran-
sitive, and show that it is distinct from a nonmetric space whose existence
follows from the work of Greim and Rajagopalan in 1997. Up to our knowl-
edge, this is only the third known counterexample to Wood’s Conjecture. We
also show that, contrary to what was expected, if a one-point compactifica-
tion of a space X is R.H. Bing’s pseudo-circle then C0(X,C) is not almost
transitive, for a generic choice of points. Finally, we point out close relation of
these results on Wood’s conjecture to a work of Irwin and Solecki on projective
Fräıssé limits and projective homogeneity of the pseudo-arc and, addressing
their conjecture, we show that the pseudo-circle is not approximately projec-
tively homogeneous.

1. Introduction

In 1982 G.V. Wood stated the following conjecture, in the isometric theory of
Banach spaces.
Wood’s Conjecture, [39]. Suppose L is a locally compact Hausdorff space such
that the space of all scalar-valued functions vanishing at infinity C0(L,K), equipped
in the supremum norm, is almost transitive. Then L consists of a single point.

Wood’s conjecture is related to Banach-Mazur rotation problem, which asks
whether a separable Banach space with a transitive norm has to be isometric or
isomorphic to a Hilbert space. Recall that a Banach space (Y, || · ||) is called almost
transitive if for any ε > 0 and any y1, y2 ∈ Y with ||y1|| = ||y2|| = 1 there exists
a surjective linear isometry T such that ||Ty1 − y2|| < ε, and it is called transitive
if for such y1 and y2 there exists a surjective linear isometry T with Ty1 = y2.
As a consequence of Banach-Stone Theorem, Wood’s Conjecture is a topological
problem. In 1997 Greim and Rajagopalan [14] proved Wood’s Conjecture in the
real case; i.e. if C0(L,R) is almost transitive then L is a singleton. They also
showed that the existence of a counterexample in the complex case implies the
existence of a nonmetric locally compact Hausdorff space L̃ such that C0(L̃,C)
is transitive. In 2005 Kawamura and Rambla, independently, disproved Wood’s
conjecture.

Theorem 1.1 (Kawamura [20], Rambla [36]). If X is a pseudo-arc and p ∈ X
then for L = X \ {p} the space C0(L,C) is almost transitive.
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