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Central limit theorems for bounded random variables under belief

measures

Xiaomin Shi∗

Abstract. Recently a new type of central limit theorem for belief functions was given in Epstein et

al. [9]. In this paper, we generalize the central limit theorem in Epstein et al. [9] to accommodate general

bounded random variables. These results are natural extension of the classical central limit theory for

additive probability measures.
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1 Introduction

Recently, a central limit theorem (CLT for short) for belief functions was given in Epstein et al. [9] (Theorem

3.1) to construct suitably robust confidence regions for incomplete models. We state their CLT for the

readers’ convenience:

Theorem 1.1 Let Λθn → Λ ∈ R
J·J and cn → c ∈ R

J . Then

ν∞θn(∩J
j=1{s∞ :

√
n[νθn(Aj)−Ψn(s

∞)(Aj)] ≤ cnj}) → NJ(c; Λ). (1.1)

In the theorem above, structure parameter θ and J = 1, 2...... be fixed a prior. S is a finite state space,

and A1, ..., AJ are J subsets of S. Ψn(s
∞)(Aj) = 1

n

n∑
i=1

I{si∈Aj}, j = 1, ..., J are the empirical frequency

measure of Aj in the first n experiments along the sample s∞ = (s1, s2, ...).

covθ(Ai, Aj) = νθ(Ai ∩Aj)− νθ(Ai)νθ(Aj). (1.2)

Λθ is the J × J symmetric and positive semidefinite matrix (covθ(Ai, Aj)) and νθ is a belief function on

S.

NJ(c; Λ) = P (ξ ≤ c),

where ξ is a J-dimensional normal random variable with zero mean and covariance matrix Λ and relation

ξ ≤ c is in the vector sense.
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