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We study the number of periodic orbits that bifurcate from a cubic polynomial 
vector field having two period annuli via piecewise perturbations. The cubic planar 
system (x′, y′) = (−y((x − 1)2 + y2), x((x − 1)2 + y2)) has simultaneously a center 
at the origin and at infinity. We study, up to first order averaging analysis, the 
bifurcation of periodic orbits from the two period annuli, first separately and second 
simultaneously. This problem is a generalization of [24] to the piecewise systems 
class. When the polynomial perturbation has degree n, we prove that the inner 
and outer Abelian integrals are rational functions and we provide an upper bound 
for the number of zeros. When the perturbation is cubic, the same degree as the 
unperturbed vector field, the maximum number of limit cycles, up to first order 
perturbation, from the inner and outer annuli is 9 and 8, respectively. When the 
simultaneous bifurcation problem is considered, 12 limit cycles exist. These limit 
cycles appear in three types of configurations: (9, 3), (6, 6) and (4, 8). In the non-
piecewise scenario, only 5 limit cycles were found.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The knowledge of the existence of periodic solutions is very important for understanding the dynamics 
of differential systems. The method of averaging has a long history that starts with the classical works 
of Lagrange and Laplace who provided an intuitive justification of the mechanism. The first formalization 
of this procedure was given by Fatou in 1928, see [8]. Nevertheless, Buica and Llibre [1] extended the 
averaging theory for studying periodic orbits to continuous differential systems using mainly the Brouwer 
degree theory. Recently, the averaging theory for studying periodic orbits to piecewise differential systems 
has been developed, see [16,17] for example. Here we use the same approach as [2].

* Corresponding author.
E-mail addresses: leonardo@mat.uab.cat (L.P.C. da Cruz), torre@mat.uab.cat (J. Torregrosa).

https://doi.org/10.1016/j.jmaa.2017.12.072
0022-247X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2017.12.072
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:leonardo@mat.uab.cat
mailto:torre@mat.uab.cat
https://doi.org/10.1016/j.jmaa.2017.12.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.12.072&domain=pdf


L.P.C. da Cruz, J. Torregrosa / J. Math. Anal. Appl. 461 (2018) 248–272 249

Fig. 1. A possible phase portrait of system (1).

Fig. 2. Return map for system (1).

Consider the perturbed polynomial piecewise differential system

Z± =
{
ẋ = −y((x− 1)2 + y2) + εP±

n (x, y),
ẏ = x((x− 1)2 + y2) + εQ±

n (x, y),
if (x, y) ∈ Σ±, (1)

with P±
n and Q±

n polynomials of degree n and Σ± = {(x, y) : ±y > 0}. An example of the phase portrait of 
the above system, for ε small, is drawn in Fig. 1.

Following [2], the limit cycles of (1) correspond to the zeros of the difference map Π+(r) − (Π−)−1(r), see 
Fig. 2. Moreover, for ε small enough and doing a time rescaling, the simple zeros of I(r) = I+(r) − I−(r), 
where

I±(r) =
∫
γ±
r

P±
n (x, y)dy −Q±

n (x, y)dx
(x− 1)2 + y2 , (2)

gives limit cycles for (1), bifurcating from γ±
r = {x2 + y2 = r2 : ±y > 0}. The above integrals defined over 

closed curves are known as Abelian integrals, see [4]. We can say that the expression (2) are the piecewise 
version of them. See more details in [10] or [19]. In our case both components of the unperturbed system 
have a common factor that appears in the denominator of the integrand. This expression appears in [18] (in 
polar coordinates) or in [11]. As we will see in Theorem 1.2 the explicit expression of (2) is different in the 
two period annuli associated to (1):

Ri = {r ∈ R : 0 < r < 1} and Re = {r ∈ R : r > 1}.

As we have commented before, the function I(r) is also called the Abelian integral associated to system (1). 
By similarity we define the inner and outer Abelian integrals as
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