

Boundedness of singular integrals on the flag Hardy spaces on
 Heisenberg group

Guorong Hu^{a}, $\mathrm{Ji} \mathrm{Li}^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
b Department of Mathematics, Macquarie University, NSW, 2109, Australia

A R T I C L E I N F O

Article history:
Received 16 February 2017
Available online xxxx
Submitted by M. Peloso

Keywords:

Discrete Littlewood-Paley analysis
Heisenberg group
Flag Hardy spaces
Singular integrals

Abstract

We prove that the classical one-parameter convolution singular integrals on the Heisenberg group are bounded on multiparameter flag Hardy spaces, which satisfy the 'intermediate' dilation between the one-parameter anisotropic dilation and the product dilation on $\mathbb{C}^{n} \times \mathbb{R}$ implicitly.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statement of main results

The purpose of this note is to show that the classical one-parameter convolution singular integrals on the Heisenberg group are bounded on multiparameter flag Hardy spaces. Recall that the Heisenberg group \mathbb{H}^{n} is the Lie group with underlying manifold $\mathbb{C}^{n} \times \mathbb{R}=\left\{[z, t]: z \in \mathbb{C}^{n}, t \in \mathbb{R}\right\}$ and multiplication law

$$
[z, t] \circ\left[z^{\prime}, t^{\prime}\right]=\left[z_{1}, \cdots, z_{n}, t\right] \circ\left[z_{1}^{\prime}, \cdots, z_{n}^{\prime}, t^{\prime}\right]:=\left[z_{1}+z_{1}^{\prime}, \cdots, z_{n}+z_{n}^{\prime}, t+t^{\prime}+2 \operatorname{Im}\left(\sum_{j=1}^{n} z_{j} \bar{z}_{j}\right)\right]
$$

The identity of \mathbb{H}^{n} is the origin and the inverse is given by $[z, t]^{-1}=[-z,-t]$. Hereafter we agree to identify \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ and to use the following notation to denote the points of $\mathbb{C}^{n} \times \mathbb{R} \equiv \mathbb{R}^{2 n+1}: g=[z, t] \equiv[x, y, t]=$ $\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}, t\right]$ with $z=\left[z_{1}, \cdots, z_{n}\right], z_{j}=x_{j}+i y_{j}$ and $x_{j}, y_{j}, t \in \mathbb{R}$ for $j=1, \ldots, n$. Then, the composition law \circ can be explicitly written as

$$
g \circ g^{\prime}=[x, y, t] \circ\left[x^{\prime}, y^{\prime}, t^{\prime}\right]=\left[x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+2\left\langle y, x^{\prime}\right\rangle-2\left\langle x, y^{\prime}\right\rangle\right]
$$

[^0]https://doi.org/10.1016/j.jmaa.2017.11.054
0022-247X/© 2017 Elsevier Inc. All rights reserved.
where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in \mathbb{R}^{n}.
Consider the dilations
$$
\delta_{r}: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}, \quad \delta_{r}(g)=\delta_{r}([z, t])=\left[r z, r^{2} t\right] .
$$

A trivial computation shows that δ_{r} is an automorphism of \mathbb{H}^{n} for every $r>0$. Define a "norm" function ρ on \mathbb{H}^{n} by

$$
\rho(g)=\rho([z, t]):=\max \left\{|z|,|t|^{1 / 2}\right\} .
$$

It is easy to see that $\rho\left(g^{-1}\right)=\rho(-g)=\rho(g), \rho\left(\delta_{r}(g)\right)=r \rho(g), \rho(g)=0$ if and only if $g=0$, and $\rho\left(g \circ g^{\prime}\right) \leq \gamma\left(\rho(g)+\rho\left(g^{\prime}\right)\right)$, where $\gamma>1$ is a constant.

The Haar measure on \mathbb{H}^{n} is known to just coincide with the Lebesgue measure on $\mathbb{R}^{2 n+1}$. For any measurable set $E \subset \mathbb{H}^{n}$, we denote by $|E|$ its (Haar) measure. The vector fields

$$
T:=\frac{\partial}{\partial t}, \quad X_{j}:=\frac{\partial}{\partial x_{j}}-2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}:=\frac{\partial}{\partial y_{j}}+2 x_{j} \frac{\partial}{\partial t}, \quad j=1, \cdots, n
$$

form a natural basis for the Lie algebra of left-invariant vector fields on \mathbb{H}^{n}. For convenience we set $X_{n+j}:=$ Y_{j} for $j=1,2, \cdots, n$, and set $X_{2 n+1}:=T$. Denote by $\widetilde{X}_{j}, j=1, \cdots, 2 n+1$, the right-invariant vector field which coincides with X_{j} at the origin. Let \mathbb{N} be the set of all non-negative integers. For any multi-index $I=\left(i_{1}, \cdots, i_{2 n+1}\right) \in \mathbb{N}^{2 n+1}$, we set $X^{I}:=X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{2 n+1}^{i_{2 n+1}}$ and $\widetilde{X}^{I}:=\widetilde{X}_{1}^{i_{1}} \widetilde{X}_{2}^{i_{2}} \cdots \widetilde{X}_{2 n+1}^{i_{2 n+1}}$. It is well known that ([6])

$$
X^{I}\left(f_{1} * f_{2}\right)=f_{1} *\left(X^{I} f_{2}\right), \quad \widetilde{X}^{I}\left(f_{1} * f_{2}\right)=\left(\widetilde{X}^{I} f_{1}\right) * f_{2}, \quad\left(X^{I} f_{1}\right) * f_{2}=f_{1} *\left(\widetilde{X}^{I} f_{2}\right)
$$

and

$$
X^{I} \tilde{f}=(-1)^{|I|} \widetilde{\tilde{X}^{I} f}
$$

where \tilde{f} is given by $\tilde{f}(g):=f\left(g^{-1}\right)$. We further set

$$
|I|:=i_{1}+\cdots+i_{2 n+1} \quad \text { and } \quad d(I):=i_{1}+\cdots+i_{2 n}+2 i_{2 n+1} .
$$

Then $|I|$ is said to be the order of the differential operators X^{I} and \widetilde{X}^{I}, while $d(I)$ is said to be the homogeneous degree of X^{I} and \widetilde{X}^{I}.

Definition 1.1 ([14]). A function ϕ is called a normalized bump function on \mathbb{H}^{n} if ϕ is supported in the unit ball $\left\{g=[z, t] \in \mathbb{H}^{n}: \rho(g) \leq 1\right\}$ and

$$
\begin{equation*}
\left|\partial_{z, t}^{I} \phi(z, t)\right| \leq 1 \tag{1.1}
\end{equation*}
$$

uniformly for all multi-indices $I \in \mathbb{N}^{2 n+1}$ with $|I| \leq N$, for some fixed positive integer N.
Remark 1.2. The condition (1.1) is equivalent (module a constant) to the following one:

$$
\begin{equation*}
\left|X^{I} \phi(g)\right| \leq 1 \tag{1.2}
\end{equation*}
$$

for all multi-indices I with $|I| \leq N$. Indeed, this follows from the following the homogeneous property of the "norm" ρ and the fact that

https://daneshyari.com/en/article/8900006

Download Persian Version:

https://daneshyari.com/article/8900006

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hugr1984@163.com (G. Hu), ji.li@mq.edu.au (J. Li).

