Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A note on Anderson's theorem in the infinite-dimensional setting

Riddhick Birbonshi^a, Ilya M. Spitkovsky^{b,*,1}, P.D. Srivastava^a

^a Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
^b Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates

ARTICLE INFO

Article history: Received 24 May 2017 Available online 10 January 2018 Submitted by D. Blecher

Keywords: Numerical range Normal operator Compact operator Weighted shift

ABSTRACT

Anderson's theorem states that if the numerical range W(A) of an *n*-by-*n* matrix A is contained in the unit disk $\overline{\mathbb{D}}$ and intersects with the unit circle at more than n points, then $W(A) = \overline{\mathbb{D}}$. An analogue of this result for compact A in an infinite dimensional setting was established by Gau and Wu. We consider here the case of A being the sum of a normal and compact operator.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The numerical range (also known as the field of values, or the Hausdorff set) of a bounded linear operator A acting on a Hilbert space \mathcal{H} is defined as

 $W(A) = \{ \langle Ax, x \rangle \colon \|x\| = 1 \}.$

Here $\langle ., . \rangle$ and $\|.\|$ stand for the scalar product on \mathcal{H} and the norm generated by it, respectively.

The set W(A) is a convex (Toeplitz-Hausdorff theorem), bounded, and in the case dim $\mathcal{H} < \infty$ also closed subset of the complex plane \mathbb{C} .

We will use the standard notation $\overline{X}, X^o, \partial X, X'$ for the closure, interior, the boundary, and the set of the limit points, respectively, of subsets $X \subset \mathbb{C}$. In particular, $\mathbb{D} = \{z : |z| < 1\}$ is the open unit disk, $\partial \mathbb{D} = \mathbb{T}$ is the unit circle, and $\overline{\mathbb{D}} = \mathbb{D} \cup \partial \mathbb{D}$ is the closed unit disk.

* Corresponding author.

https://doi.org/10.1016/j.jmaa.2018.01.002 0022-247X/© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: riddhick.math@gmail.com (R. Birbonshi), ims2@nyu.edu, imspitkovsky@gmail.com (I.M. Spitkovsky), pds@maths.iitkgp.ernet.in (P.D. Srivastava).

 $^{^1}$ The second author was supported in part by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.

The closure $\overline{W(A)}$ of the numerical range of A contains the spectrum $\sigma(A)$, and thus the convex hull conv $\sigma(A)$ of the latter. For normal A, $\overline{W(A)} = \operatorname{conv} \sigma(A)$. We refer to [4] for these and other well known properties of the numerical range.

And erson's theorem (unpublished by Joel Anderson himself but discussed e.g. in [2,7]) states that if W(A) is contained in $\overline{\mathbb{D}}$ and the intersection of W(A) with \mathbb{T} consists of more than $n = \dim \mathcal{H}$ points, then in fact $W(A) = \overline{\mathbb{D}}$. This result is sharp in a sense that for a unitary operator U with a simple spectrum acting on an *n*-dimensional $\mathcal{H}, W(U)$ is a polygon with *n* vertices on \mathbb{T} and thus different from $\overline{\mathbb{D}}$.

Unitary operators also deliver easy examples showing that Anderson's theorem does not generalize to the infinite-dimensional setting. Indeed, if A is a diagonal operator with the point spectrum $\sigma_p(U) = \{\lambda_j, j = 1, 2, ...\} \subset \mathbb{T}$, then $\overline{W(A)} = \operatorname{conv} \sigma_p(A) \subsetneq \overline{\mathbb{D}}$ while $W(A) \cap \mathbb{T} = \sigma_p(A)$ is infinite.

Moreover, according to [7] every bounded convex set G for which $G \setminus G^o$ is the union of countably many singletons and conic arcs is the numerical range of some operator acting on a separable \mathcal{H} .

On the positive side, Anderson's theorem generalizes quite naturally to the infinite dimensional case under some restrictions on the operators involved. As was shown more recently in [3], the following result holds:

Theorem 1. If A is a compact operator on a Hilbert space with W(A) contained in $\overline{\mathbb{D}}$ and $\overline{W(A)}$ intersecting \mathbb{T} at infinitely many points, then $W(A) = \overline{\mathbb{D}}$.

In this paper, we single out a wider class of operators for which analogs of Anderson's theorem are valid in an infinite dimensional setting.

2. Main results

We start with a lemma.

Lemma 2. Let A = N + K, where N is normal and K is a compact operator on a Hilbert space \mathcal{H} . If $W(A) \subset \overline{\mathbb{D}}$ and γ is a closed arc of \mathbb{T} such that the intersection $\gamma \cap \overline{W(A)}$ is infinite while $\gamma \cap \sigma_{ess}(A) = \emptyset$, then $\gamma \subset W(A)$.

Recall that the essential spectrum $\sigma_{ess}(A)$ of an operator A is the set of $\lambda \in \mathbb{C}$ such that the operator $A - \lambda I$ is not Fredholm. Equivalently, $\sigma_{ess}(A)$ is the spectrum of the equivalence class of A in the Calkin algebra of the algebra of bounded linear operators by the ideal of compact operators.

The proof of this lemma is delegated to the next section; we will discuss here some of its consequences.

Theorem 3. Let A = N + K, where N is normal and K is a compact operator on a Hilbert space \mathcal{H} . Let also $W(A) \subset \overline{\mathbb{D}}$ and Γ be a (relatively) open subset of \mathbb{T} disjoint with $\sigma_{ess}(A)$. If every connected component of Γ contains limit points of its intersection with $\overline{W(A)}$, then $\Gamma \subset W(A)$.

Proof. Connected components of Γ are open arcs Γ_j . Writing Γ_j as $\bigcup_{k=1}^{\infty} \gamma_{jk}$, where

$$\gamma_{j1} \subset \gamma_{j2} \subset \cdots \subset \gamma_{jk} \subset \cdots$$

is an expanding family of closed arcs, we see that $\gamma = \gamma_{jk}$ satisfy the conditions of Lemma 2 and thus $\gamma_{jk} \subset W(A)$, for k large enough. Consequently,

$$\Gamma = \bigcup_{i,k=1}^{\infty} \gamma_{jk} \subset W(A). \quad \Box$$

Download English Version:

https://daneshyari.com/en/article/8900015

Download Persian Version:

https://daneshyari.com/article/8900015

Daneshyari.com