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This article investigates the global asymptotic behavior of the classical Nicholson–
Bailey model [6] for λ > 1. In particular, it is shown that the Nicholson–Bailey 
model has no periodic solutions in the first quadrant other than the fixed point 
(x̄, ̄y) and that all non-trivial solutions in the first quadrant are unbounded.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A general host parasitoid model has the form(
xn+1
yn+1

)
=

(
c yn(1 − g(xn, yn))

λ yng(xn, yn)

)
, where c, λ > 0 and x0, y0 > 0. (1)

The variables xn and yn represent the populations of the parasitoid and the host at time n, respectively. The 
parameter λ > 0 represents the intrinsic growth rate of the host, the parameter c > 0 represents the number 
of viable eggs laid by a single parasitoid, and g(x, y) represents the probability that a host escapes being 
infested by a parasitoid. In 1935, Nicholson and Bailey [6] made the assumption that the probability of a 
host coming into contact with a parasitoid is modeled by a Poisson distribution in the number of parasitoids, 
and that a host becomes infested after the first contact with a parasitoid; that is g(x, y) = e−ax, where the 
constant a > 0 depends on the parasitoid’s ability to locate hosts. After scaling x �→ a x and y �→ c a y, we 
have the Nicholson–Bailey host parasitoid model

F

(
xn

yn

)
:=

(
xn+1
yn+1

)
=

(
yn(1 − e−xn)
λ yne

−xn

)
, where λ > 0 and x0, y0 > 0. (NB)
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Let

Q = {(x, y) ∈ R
2 : x, y > 0}.

The fixed points of F (x, y) in R2 are (0, 0) and

(x̄, ȳ) =
(

lnλ,
λ

λ− 1 lnλ

)
.

The fixed point (x̄, ȳ) lies in Q if λ > 1. If 0 < λ < 1 all solutions in Q converge to the fixed point (0, 0), and 
in the non-hyperbolic case λ = 1, all solutions lie on the level curves of the function z = x + y− ln y; see [4]. 
If λ > 1, then (x̄, ȳ) is an unstable focus. Hsu et al. proved in this case that all solutions are oscillatory; see 
Theorem 4.4 in [4]:

Theorem A (Hsu et al.). Let λ > 1 and (x, y) ∈ Q be any point different from (x̄, ȳ). Then the bisequences 
{xn}∞n=−∞ and {yn}∞n=−∞ generated by iterating F (x, y) are strictly oscillatory around x̄ and ȳ respectively. 
Moreover, in polar coordinates (r, θ) centered at (x̄, ȳ), for the bisequence {(xn, yn)}∞n=−∞ the corresponding 
bisequence {θn}∞n=−∞ of polar angles is strictly decreasing and satisfies

lim
n→∞

θn = −∞ and lim
n→−∞

θn = ∞.

Moreover the authors also proved the non-existence of periodic orbits for λ > 1 sufficiently close to 1
(see [4] Corollary 4.6):

Theorem B (Hsu et al.). For any positive integer N , there exists λ0 > 1 such that for any 1 < λ < λ0, 
Fλ(x, y) has no periodic points in Q of period less than N except the fixed point (x̄, ȳ).

In this article, Theorem B will be improved by showing that for all λ > 1, F (x, y) has no periodic 
solutions other than the fixed point (x̄, ȳ). Further, it will be proven that all non-trivial solutions in the 
first quadrant of system (NB) are unbounded. These results verify the numerical observation [2] that when 
λ > 1, both the host and parasitoid populations are unbounded and oscillate with increasing amplitude.

2. Preliminary lemmas

The proof of the main theorem will rely on the following function:

V (x, y) = lnλ

λ− 1 (x− lnλ ln x) + 1
λ

(
y −

(
λ lnλ

λ− 1

)
ln y

)
.

Define

L(x, y) = V (x, y) − V (x̄, ȳ)

and

ΔL(x, y) = L (F (x, y)) − L(x, y). (2)

The functions V (x, y), L(x, y), and ΔL(x, y) depend on the value of λ, but this dependency will be 
suppressed in the notation. Level curves for the function L(x, y) are depicted in Fig. 1. It should be noted 
that V (x, y) has the form of solutions to the Volterra–Lotka predator–prey equations
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