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In a real normed space X we consider an approximate symmetry of the Birkhoff 
orthogonality ⊥B and establish its connections with some properties of the space X. 
Moreover, we introduce and study a new geometric constant for X, connected with 
the considered property.
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0. Introduction

The Birkhoff orthogonality in a normed space is generally not a symmetric relation. However, allowing 
some inaccuracy one can consider an approximate Birkhoff orthogonality (a new characterization of it has 
been obtained recently in [8]) and then a related notion of approximate symmetry of this orthogonality can 
be introduced and investigated. In the present paper we deal with this problem. We consider also some 
geometrical properties connected with such an approximate symmetry.

Throughout the paper we consider a real normed space (X, ‖ · ‖) with dimX ≥ 2. BX and SX stand for 
the closed unit ball and the unit sphere in X, respectively. For another normed space Y , L(X, Y ) denotes 
the space of all linear and bounded operators from X into Y . For T ∈ L(X, Y ), by MT we mean the set of 
unit vectors at which T attains its norm, namely MT := {x ∈ SX : ‖Tx‖ = ‖T‖}. K(X, Y ) is the subspace 
of L(X, Y ) consisting of all compact operators. X∗ stands for the dual and X∗∗ for the bidual space of X.

1. Approximate Birkhoff orthogonality

The Birkhoff orthogonality in X is defined by:

x⊥By ⇐⇒ ‖x + λy‖ ≥ ‖x‖, ∀λ ∈ R
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(cf. [3,14,15] or a survey [1]). We consider also an approximate Birkhoff orthogonality (ε-Birkhoff orthogo-
nality with ε ∈ [0, 1)):

x⊥ε
By ⇐⇒ ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖, ∀λ ∈ R (1.1)

as introduced in [5]. Obviously, ⊥0
B = ⊥B. If X is an inner product space, the approximate orthogonality is 

naturally defined by:

x⊥ε y ⇐⇒ | 〈x|y〉 | ≤ ε ‖x‖ ‖y‖,

and in this case ⊥ε
B coincides with ⊥ε (cf. [5, Proposition 2.1]).

In a recent paper [8] the authors have proved the following characterization of the approximate Birkhoff 
orthogonality.

Theorem 1.1 ([8], Theorem 2.3). Let X be a real normed space. For x, y ∈ X and ε ∈ [0, 1):

x⊥ε
By ⇐⇒ ∃z ∈ Lin{x, y} s.t. x⊥Bz, ‖z − y‖ ≤ ε‖y‖. (1.2)

Another characterization can be derived from Theorem 1.1 by using the supporting functionals at x ∈ X:

J(x) := {ϕ ∈ X∗ : ‖ϕ‖ = 1, ϕ(x) = ‖x‖}.

Theorem 1.2 ([8], Theorem 2.4). Let X be a real normed space. For x, y ∈ X and ε ∈ [0, 1):

x⊥ε
By ⇐⇒ ∃ϕ ∈ J(x) s.t. |ϕ(y)| ≤ ε‖y‖. (1.3)

Clearly, (1.3) generalizes James’ characterization (cf. [15, Corollary 2.2]):

x⊥By ⇐⇒ ∃ϕ ∈ J(x) s.t. ϕ(y) = 0. (1.4)

A different definition of an approximate Birkhoff orthogonality was given by Dragomir [9]. For a given 
ε ∈ [0, 1) and x, y ∈ X:

x⊥
ε

By ⇐⇒ ‖x + λy‖ ≥ (1 − ε)‖x‖, ∀λ ∈ R. (1.5)

Some relationships between definitions (1.1) and (1.5) were established in [5] and [19]. In particular, for 
inner product spaces ⊥

ε
B is equal to ⊥η with η =

√
1 − (1 − ε)2.

In an arbitrary normed space Proposition 3.1 in [19] yields

x⊥ε
By ⇒ x⊥

δ
By,

with δ := 1 −
√

1 − 4ε and for ε ≤ 1
4 . We will improve this result for real spaces.

Theorem 1.3. Let X be a real normed space and let ε ∈
[
0, 1

2
)
. Then

x⊥ε
By ⇒ x⊥

2ε
By. (1.6)
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