Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Modulus of continuity and Lipschitz approximation

Luofei Liu*, Yan Jiang

College of Mathematics and Computer Science, Hunan Normal University, Changsha, 410081, China

ARTICLE INFO

Article history: Received 4 May 2017 Available online 6 December 2017 Submitted by P. Koskela

Keywords: Modulus of continuity Doubling metric space Lipschitz approximation Uniformly continuous map Subadditivity ABSTRACT

Given a uniformly continuous map f from a doubling metric space X to a normed linear space V, and given a subadditive function ω , we give a characterization of ω dominating the modulus of continuity of f in terms of Lipschitz approximation. As the main part of this characterization, we give a constructive method of approximating a uniformly continuous map from X to V by Lipschitz maps, the corresponding approximation operation is linear.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The modulus of continuity of a map $f: X \to Y$ between two metric spaces is the function $\omega_f: [0, \infty) \to \mathbb{R}_+ \cup \{\infty\}$ given by

$$\omega_f(\varepsilon) = \sup\{d(f(x), f(y)) : x, y \in X, d(x, y) \le \varepsilon\}.$$

The map f is said to be uniformly continuous if there is a $\varepsilon_0 > 0$ such that $\omega_f(\varepsilon) < \infty$ for $\varepsilon < \varepsilon_0$, and $\lim_{\varepsilon \to 0^+} \omega_f(\varepsilon) = 0$. In mathematical analysis, the modulus of continuity of a map is used to measure quantitatively its uniform continuity. In general, it is difficult to determine explicitly the modulus of continuity ω_f of a map f, one is mainly interested in maps whose modulus of continuity can be dominated by a special class of functions. For instance, the inequality $\omega_f(\varepsilon) \leq c\varepsilon$ for some constant c describes the Lipschitz continuity of f, and $\omega_f(\varepsilon) \leq c\varepsilon^{\alpha}$ ($0 < \alpha < 1$) describes the Hölder continuity of f. The following property (its a simple proof is given in Section 2) gives a criteria to control ω_f by a prescribed function ω in terms of approximation by Lipschitz maps.

Proposition 1.1. Let $f: X \to Y$ be a map between two metric spaces and $\omega : [0, \infty) \to [0, \infty)$ an arbitrary function. If for every $0 < \varepsilon < \infty$, there is a Lipschitz map $f_{\varepsilon} : X \to Y$ such that (i) $\operatorname{Lip}(f_{\varepsilon}) \leq c \frac{\omega(\varepsilon)}{\varepsilon}$ for

* Corresponding author.

https://doi.org/10.1016/j.jmaa.2017.11.029 0022-247X/© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: luofei_liu@aliyun.com (L. Liu), jiangyan041235@163.com (Y. Jiang).

some constant c; (ii) $\sup_{x \in X} d(f_{\varepsilon}(x), f(x)) \leq c_1 \omega(\varepsilon)$ for some constant c_1 ; then $\omega_f(\varepsilon) \leq c_2 \omega(\varepsilon)$ for some constant c_2 .

If $\omega : [0, \infty) \to [0, \infty)$ satisfies $\lim_{\varepsilon \to 0^+} \omega(\varepsilon) = 0$, and $\sup_{x \in X} d(f_{\varepsilon}(x), f(x)) \le c\omega(\varepsilon)$ for some constant c and $0 < \varepsilon < \infty$, we say that $\{f_{\varepsilon}\}$ is an ω -approximation of f.

In this paper we shall focus on the problem whether the converse of Proposition 1.1 also holds, namely, the following

Problem 1.2. Let $f : X \to Y$ be a map between two metric spaces. Assume that ω_f is dominated by $\omega : [0, \infty) \to [0, \infty)$ up to a constant factor and $\lim_{\varepsilon \to 0^+} \omega(\varepsilon) = 0$. Under what conditions on X, Y, ω and f, for every $0 < \varepsilon < \infty$, does there exist a Lipschitz map $f_{\varepsilon} : X \to Y$ such that $\operatorname{Lip}(f_{\varepsilon}) \leq c \frac{\omega(\varepsilon)}{\varepsilon}$ and $\sup_{x \in X} d(f_{\varepsilon}(x), f(x)) \leq c_1 \omega(\varepsilon)$ for some constants c, c_1 ?

In view of Proposition 1.1, an affirmative answer to Problem 1.2 will provide a characterization of ω dominating ω_f .

Removing the quantitative requirement for the Lipschitz constant and approximation error, Problem 1.2 boils down to the usual *Lipschitz approximation problem*:

Problem 1.3. Given $\mu > 0$, under what conditions on X, Y and f, does there exist a Lipschitz map f_{μ} : $X \to Y$ such that $\sup_{x \in X} d(f_{\mu}(x), f(x)) < \mu$?

An affirmative answer to Problem 1.2 is stronger than an affirmative answer to Problem 1.3. Even in the case of Problem 1.3, if there are no restrictions on X, Y or f, we will obtain a negative answer as shown in the examples in [8, p. 6] and [3, p. 18].

Let us recall some positive answers to the usual Lipschitz approximation problem (Problem 1.3). In [8, p. 6], J. Heinonen provides a constructive method to approximate a continuous map from a compact metric space X to $l_{\infty}(\Gamma)$ by a Lipschitz map, here $l_{\infty}(\Gamma)$ is the Banach space of all bounded real-valued functions on a set Γ with the usual sup-norm. In [7], it is shown that each continuous map from a compact metric space X to a convex subset of a normed linear space can approximated by a Lipschitz map. Removing the assumption of compactness, in [6] and [2], it is shown that each uniformly continuous function $f: X \to \mathbb{R}$ can be approximated by Lipschitz in small functions. Here a function $f: X \to \mathbb{R}$ is said to be Lipschitz in small if there are constants $K < \infty$ and r > 0 such that $|f(x) - f(y)| \leq Kd(x, y)$ whenever d(x, y) < r.

In the monograph of Y. Benyamini and J. Lindenstrauss [3, Chapter 1, 2], we can find several results concerning Problem 1.2 as follows.

Theorem 1.4. [3, p. 35, Prop. 2.1; p. 17, Prop. 1.10] Let $f : X \to Y$ be a uniformly continuous map between two metric spaces, whose modulus of continuity ω_f is dominated by a subadditive function $\omega : [0, \infty) \to [0, \infty)$ with $\lim_{\varepsilon \to 0^+} \omega(\varepsilon) = 0$.

(1) If $Y = l_{\infty}(\Gamma)$ for some set Γ , then for every $0 < \varepsilon < \infty$, there is a Lipschitz map $f_{\varepsilon} : X \to l_{\infty}(\Gamma)$ such that $\operatorname{Lip}(f_{\varepsilon}) \leq \frac{2\omega(\varepsilon)}{\varepsilon}$ and $\sup_{x \in X} \|f_{\varepsilon}(x) - f(x)\| \leq 3\omega(\varepsilon)$.

(2) If X is a subset of a Hilbert space and Y is a Hilbert space, then the same conclusion as (1) holds.

(3) If Y is an absolute Lipschitz retract and $\omega(\varepsilon) = c\varepsilon^{\alpha}$, c > 0, $0 < \alpha < 1$ (i.e., f is α -Hölder), then for every $0 < \varepsilon < \infty$, there is a Lipschitz map $f_{\varepsilon} : X \to Y$ such that $\operatorname{Lip}(f_{\varepsilon}) \leq \frac{c_1\omega(\varepsilon)}{\varepsilon}$ for some constant c_1 and $\sup_{x \in X} d(f_{\varepsilon}(x), f(x)) \leq c^{-1}\omega(\varepsilon)$.

In Theorem 1.4 (3), the condition of absolute Lipschitz retract allows us to reduce the target space to the case of $l_{\infty}(\Gamma)$ by Kuratowski's isometric embedding $Y \hookrightarrow l_{\infty}(Y)$ (see the remark at the end of this paper or [8, p. 5]) and the corresponding Lipschitz retraction $r: l_{\infty}(Y) \to Y$ (cf. [3, p. 18]). Furthermore, in Theorem 1.4 (1) and (3), the target space $Y = l_{\infty}(\Gamma)$ actually boils down to $Y = \mathbb{R}$ by considering Download English Version:

https://daneshyari.com/en/article/8900130

Download Persian Version:

https://daneshyari.com/article/8900130

Daneshyari.com