Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

霐

Nonlocal Cahn–Hilliard–Navier–Stokes systems with shear dependent viscosity

Sergio Frigeri^a, Maurizio Grasselli^b, Dalibor Pražák^{c,*}

^a Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore (Brescia), Via Musei 11, 25121, Pressia, Italy

Via Musei 41, 25121, Brescia, Italy

 ^b Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9, I-20133 Milano, Italy
 ^c Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ-18675 Prague 8, Czech Republic

ARTICLE INFO

Article history: Received 17 July 2017 Available online 8 November 2017 Submitted by D. Wang

Keywords: Non-Newtonian fluids Nonlocal Cahn-Hilliard equations Regularity Uniqueness

ABSTRACT

We consider a diffuse interface model for the phase separation of an incompressible and isothermal non-Newtonian binary fluid mixture in three dimensions. The averaged velocity \boldsymbol{u} is governed by a Navier–Stokes system with a shear dependent viscosity controlled by a power p > 2. This system is nonlinearly coupled through the Korteweg force with a convective nonlocal Cahn–Hilliard equation for the order parameter φ , that is, the (relative) concentration difference of the two components. The resulting equations are endowed with the no-slip boundary condition for \boldsymbol{u} and the no-flux boundary condition for the chemical potential μ . The latter variable is the functional derivative of a nonlocal and nonconvex Ginzburg–Landau type functional which accounts for the presence of two phases. We first prove the existence of a weak solution in the case $p \geq 11/5$. Then we extend some previous results on time regularity and uniqueness if p > 11/5.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider a mixture of incompressible, isothermal and (partially) immiscible binary fluids in a given bounded domain $\Omega \subset \mathbb{R}^3$. We suppose that they both have density equal to one and we denote by **u** their (volume) averaged velocity and by φ the (relative) concentration difference. A well-known diffuse interface model (see, e.g., [4,25,26]) for the phase separation of the mixture is given by

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \operatorname{div} \boldsymbol{\mathcal{S}}(\varphi, D\boldsymbol{u}) + \nabla \pi = \mu \nabla \varphi + \boldsymbol{h}(t)$$
(1.1)

$$\operatorname{div} \boldsymbol{u} = 0 \tag{1.2}$$

https://doi.org/10.1016/j.jmaa.2017.10.078 0022-247X/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: sergiopietro.frigeri@unicatt.it, sergio.frigeri.sf@gmail.com (S. Frigeri), maurizio.grasselli@polimi.it (M. Grasselli), prazak@karlin.mff.cuni.cz (D. Pražák).

$$\partial_t \varphi + (\boldsymbol{u} \cdot \nabla) \varphi = \Delta \mu \tag{1.3}$$

$$\mu = -\Delta \varphi + F'(\varphi) \tag{1.4}$$

in $\Omega \times (0,T)$, T > 0. Here the mobility and other constants have been taken equal to one, F is a double well potential (e.g., $F(r) = (r^2 - 1)^2$, $r \in \mathbb{R}$) which accounts for the presence of two components, \boldsymbol{h} is an external force. The stress tensor $\boldsymbol{\mathcal{S}}$, up to the pressure term, depends on the symmetric gradient $D\boldsymbol{u} := (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u})/2$ of the velocity field \boldsymbol{u} and, possibly, on φ , through a suitable constitutive law. If, for instance, we have

$$\boldsymbol{\mathcal{S}}(\boldsymbol{\varphi}, D\boldsymbol{u}) = \boldsymbol{\nu}(\boldsymbol{\varphi}) D\boldsymbol{u} \,, \tag{1.5}$$

 ν being a given strictly positive function, then we are in presence of a Newtonian mixture. The corresponding system (1.1)–(1.4) is called Cahn–Hilliard–Navier–Stokes system (see, e.g., [1,8,9,20,30,34,36]). When the mixture has non-Newtonian features, then the stress tensor itself depends on some power of |Du|. A typical example is given by

$$\boldsymbol{\mathcal{S}}(\varphi, D\boldsymbol{u}) = \left(\nu_1(\varphi) + \nu_2(\varphi) | D\boldsymbol{u} |^{p-2}\right) D\boldsymbol{u} , \qquad (1.6)$$

where ν_i , i = 1, 2, are strictly positive functions and p > 1. Concerning the single non-Newtonian fluids see, for instance, [32] for the physical background, and [31] for the basic mathematical theory; cf. also [10,13] and its references for more advanced development. The system (1.1)-(1.4) has also recently been investigated in a number of contributions (see [2,7,23,24,27]). In those papers, the chemical potential μ (see (1.1)) is the functional derivative of the Ginzburg–Landau type functional

$$\mathcal{F}(\varphi) = \int_{\Omega} \left(\frac{|\nabla \varphi(x)|^2}{2} + F(\varphi(x)) \right) dx.$$

However, this is a phenomenological assumption and a more rigorous approach shows that the functional should be nonlocal (see [21,22]). For instance, following [5], we can take

$$\mathcal{E}(\varphi) = \frac{1}{4} \int_{\Omega \times \Omega} J(x-y) |\varphi(x) - \varphi(y)|^2 dx dy + \int_{\Omega} F(\varphi(x)) dx \,. \tag{1.7}$$

Here $J : \mathbb{R} \to \mathbb{R}$ is a sufficiently smooth interaction kernel such that J(x) = J(-x). With this choice the chemical potential becomes

$$\mu = a\varphi - J * \varphi + F'(\varphi)$$

where

$$a(x) := \int_{\Omega} J(x-y)dy, \qquad (J*\varphi)(x) = \int_{\Omega} J(x-y)\varphi(y)dy.$$
(1.8)

Therefore we have the following nonlocal system in $\Omega \times (0, T)$

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \operatorname{div} \boldsymbol{\mathcal{S}}(\varphi, D\boldsymbol{u}) + \nabla \pi = \mu \nabla \varphi + \boldsymbol{h}(t)$$
(1.9)

$$\operatorname{div} \boldsymbol{u} = 0 \tag{1.10}$$

$$\partial_t \varphi + (\boldsymbol{u} \cdot \nabla) \varphi = \Delta \mu \tag{1.11}$$

$$\mu = a\varphi - J * \varphi + F'(\varphi). \qquad (1.12)$$

Download English Version:

https://daneshyari.com/en/article/8900133

Download Persian Version:

https://daneshyari.com/article/8900133

Daneshyari.com