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It is a widely used method, for instance in perturbation theory, to associate with 
a given C0-semigroup its so-called interpolation and extrapolation spaces. In the 
model case of the shift semigroup acting on L2(R), the resulting chain of spaces 
recovers the classical Sobolev scale. In 2014, the second named author defined the 
universal interpolation space as the projective limit of the interpolation spaces and 
the universal extrapolation space as the completion of the inductive limit of the 
extrapolation spaces, provided that the latter is Hausdorff. In this note we use 
the notion of the dual with respect to a pivot space in order to show that the 
aforementioned inductive limit is Hausdorff and already complete if we consider a 
C0-semigroup acting on a reflexive Banach space. If the space is Hilbert, then the 
inductive limit can be represented as the dual of the projective limit whenever a 
power of the generator of the initial semigroup is a self-adjoint operator. In the 
case of the classical Sobolev scale we show that the latter duality holds, and that 
the two universal spaces were already studied by Laurent Schwartz in the 1950s. 
Our results and examples complement the approach of Haase, who in 2006 gave 
a different definition of universal extrapolation spaces in the context of functional 
calculi. Haase avoids the inductive limit topology precisely for the reason that it a 
priori cannot be guaranteed that the latter is always Hausdorff. We show that this 
is indeed the case provided that we start with a semigroup defined on a reflexive 
Banach space.

© 2017 Elsevier Inc. All rights reserved.

1. The classical Sobolev scale

We start by considering the following generic example. Let (T (t))t�0 denote the left shift semigroup 
on the Hilbert space L2(R) generated by the first derivative d

dx defined on the domain D( d
dx ) = {f ∈
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L2(R) ; d
dxf ∈ L2(R)}. Writing down the abstract interpolation and extrapolation spaces, see Engel, Nagel 

[5, Chapter II.5], gives the classical scale of Sobolev spaces

· · · −→ H3(R) i23−→ H2(R) i12−→ H1(R) i01−→ L2(R) i−1
0−→ H−1(R)

i−2
−1−→ H−2(R)

i−3
−2−→ H−3(R) → · · ·

where the maps are all continuous. Taking the projective limit of this chain of spaces, i.e., endowing the 
intersection ∩n∈NH

n(R) with the coarsest linear topology which makes the inclusions ∩n∈NH
n(R) → Hk(R)

for all k ∈ N continuous, yields the classical function space

DL2(R) = projn∈N Hn(R)

studied by Schwartz [10, § 8, p. 199]. Taking the inductive limit, i.e., endowing the union ∪n∈NH
−n(R) with 

the finest linear topology which makes the inclusions Hk(R) → ∪n∈NH
−n(R) for all k ∈ N continuous, yields 

a subspace of the space of distributions which turns out to be isomorphic to the strong dual of DL2(R), i.e.,

D′
L2(R) ∼= indn∈N H−n(R)

in a natural way. Also this space was investigated by Schwartz [10, § 8, p. 200]. Indeed, we have the following 
commutative diagram

L2(R) H−1(R) H−2(R) H−3(R) · · ·

L2(R) H1(R)′ H2(R)′ H3(R)′ · · ·

i−1
0

idL2(R)

i−2
−1

Φ1

i−3
−2

Φ2 Φ3

(i01)
′ (i12)

′ (i23)
′

(1)

where the maps Φn for n ∈ N are isomorphisms. Our first aim is to see that the corresponding inductive 
limits are isomorphic. We emphasize that this is not trivial just by having “step-wise” isomorphisms. Indeed, 
we have for instance H−n(R) ∼= L2(R) for each n ∈ N but L2(R) � ∪n∈NH

−n(R), which shows that we have 
to be extremely careful when we “identify” isomorphic spaces.

The suitable notion to address our first aim is that of equivalent inductive sequences. Each row in the 
diagram (1) is a so-called inductive sequence, i.e., a sequence (Xn, in+1

n )n∈N of Banach spaces Xn and 
linear and continuous maps in+1

n : Xn → Xn+1 for n ∈ N. Two such inductive sequences (Xn, in+1
n )n∈N

and (Yn, jn+1
n )n∈N are said to be equivalent, if there are increasing sequences (k(n))n∈N and (�(n))n∈N of 

natural numbers with n � �(n) � k(n) � �(n + 1) and linear and continuous maps αn : Y�(n) → Xk(n), 
βn : Xk(n) → Y�(n+1) such that

· · · Xk(n) Xk(n+1) · · ·

· · · Y�(n) Y�(n+1) Y�(n+2) · · ·

i
k(n+1)
k(n)

βn βn+1

j
�(n+1)
�(n)

αn

j
�(n+2)
�(n+1)

αn+1

commutes. As a matter of fact, two equivalent inductive sequences have isomorphic inductive limits.
We now see that the two inductive sequences in (1) are equivalent and we thus get that

indn∈N H−n(R) ∼= indn∈N Hn(R)′

holds. Now we would like to conclude that the dual of a projective limit (=intersection) is equal to the 
inductive limit (=union) of the duals of the spaces in the sequence. This is indeed true but requires an open 
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