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We complement the argument of M. Z. Garaev (2009) [9] with several other ideas 
to obtain a stronger version of the large sieve inequality with sparse exponential 
sequences of the form λsn . In particular, we obtain a result which is non-trivial for 
monotonically increasing sequences S = {sn}∞n=1 provided sn � n2+o(1), whereas 
the original argument of M. Z. Garaev requires sn � n15/14+o(1) in the same setting. 
We also give an application of our result to arithmetic properties of integers with 
almost all digits prescribed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The classical large sieve inequality, giving upper bounds on average values of various exponential and 
similar Dirichlet polynomials, such as
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with primitive multiplicative characters χ modulo q and arbitrary complex weights {αs}Sn=1, has proved 
to be an extremely useful and versatile tool in analytic number theory and harmonic analysis, see, for 
example, [13,17,18].

Furthermore, if the weights αs are supported only on elements of some sequence S = {sn}Tn=1, which 
naturally occurs in many number theoretic applications, then the above sums can be written as
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where γn = αsn and

eq(z) = exp(2πiz/q).

However, the power of general bounds rapidly diminishes when the sequence S becomes sparse.
Partially motivated by this phenomenon, and partially by applications to Mersenne numbers, Garaev 

and Shparlinski [10, Theorem 3.1] have introduced a modification of the large sieve, for both exponential 
and Dirichlet polynomials with arguments that contain exponentials from extremely sparse sequences.

In particular, in the setting of [10], the arguments of the exponentials and characters appearing in (1.1)
contain exponential functions λsn with elements of S rather than the elements of S themselves. In the case 
of exponential polynomials, Garaev [9] has introduced a new approach, which has led to a stronger version 
of the exponential large sieve inequality, improving some of the results of [10], see also [1, Lemma 2.11]
and [22, Theorem 1] for several other bounds of this type. Furthermore, stronger versions of the exponential 
large sieve inequality for special sequences S, such as T consecutive integers or the first T primes, can also 
be found in [1,10], with some applications given in [21].

Here we continue this direction and concentrate on the case of general sequences S without any arithmetic 
restriction. We introduce several new ideas which allow us to improve some results of Garaev [9]. For example, 
we make use of the bound of [15, Theorem 5.5] on exponential sums over small multiplicative subgroups 
modulo p, which hold for almost all primes p, see Lemma 3.2. We also make the method more flexible so it 
now applies to much sparser sequences S than in [9]. We believe these ideas may find more applications in 
similar problems.

More precisely, let us fix some integer λ � 2. For each prime number p, we let tp denote the order of 
λ mod p. For real X and Δ we define the set

EΔ(X) = {p � X : tp � Δ}.

Note that by a result of Erdős and Murty [8], see also (2.15), for Δ = X1/2, almost all primes p � X belong 
to EΔ(X).

For integer T and two sequences of complex weights Γ = {γn}Tn=1 and integers S = {sn}Tn=1 we define 
the sums
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These sums majorize the ones considered by Garaev [9] where each term is divided by the divisor function 
τ(p − 1) of p − 1. Here we obtain a new bound of the sums Vλ(Γ, S; T, X, Δ) which in particular improves 
some bounds of Garaev [9].

The argument of Garaev [9] reduces the problem to bounding Gauss sums for which he uses the bound 
of Heath-Brown and Konyagin [12], that is, the admissible pair (2.1), which is defined below. In particular, 
for Vλ(Γ, S; T, X, X1/2) the result of Garaev [9] is nontrivial provided

S � X15/14+o(1). (1.2)

Our results by-pass significantly the threshold (2.9) and allow us to replace 15/14 with any fixed ϑ < 2.
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