

Scaling of spectra of self-similar measures with consecutive digits ${ }^{\text {/ }}$

Zhi-Yi Wu, Meng Zhu*
School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

A R T I C L E I N F O

Article history:

Received 7 September 2017
Available online xxxx
Submitted by R.M. Aron

Keywords:

Self-similar measures
Orthonormal basis of exponential
Spectral measures
Scaling spectra

Abstract

We consider the equally-weighted Cantor measures $\mu_{p, q}$ generated by the iterated function system (IFS) $\left\{f_{i}(x)=\frac{x}{p}+\frac{i}{q}\right\}_{i=0}^{q-1}$, where $2 \leq q \in \mathbb{Z}$ and $q<p \in \mathbb{R}$. It is known that if q divides p, then $\mu_{p, q}$ is a spectral measure with a spectrum $$
\Lambda_{p, q}=\{0,1, \ldots, q-1\}+p\{0,1, \ldots, q-1\}+p^{2}\{0,1, \ldots, q-1\}+\cdots \text { (finite sum) }
$$ (Dai, He and Lai (2013) [6]). In this paper the authors study some positive integers b such that $b \Lambda_{p, q}$ is also a spectrum of $\mu_{p, q}$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A probability measure μ on \mathbb{R} with compact support is said to be a spectral measure if there exists a countable set Λ of real numbers, called a spectrum of μ, such that $E(\Lambda)=\left\{e^{-2 \pi i \lambda x}: \lambda \in \Lambda\right\}$ forms an orthonormal basis for $L^{2}(\mu)$. A well-known classic example is the Lebesgue measure on [0,1] for which the set \mathbb{Z} is the only spectrum containing 0 . The existence of a spectrum for a probability measure is one of fundamental problems in applied harmonic analysis builded on a measure, and it was initiated by Fuglede in his seminal paper [16]. In 1998, Jorgensen and Pedersen [22] discovered the first families of non-atomic singular spectral measures. They showed that the Bernoulli convolutions are spectral measures if the contraction ratios are the reciprocal of an even integer. Recently, Dai [4] showed that the only spectral Bernoulli convolutions are of the above cases. The details on the background of Bernoulli convolutions and recent topics are given in $[4,15,27,29,28]$ and the references therein. Actually, the spectral measure problem attracts more attention due to Jorgensen and Pedersen's examples. Following this discovery, various singular

[^0]https://doi.org/10.1016/j.jmaa.2017.10.054
0022-247X/© 2017 Elsevier Inc. All rights reserved.
spectral measure on self-similar/self-affine/moran fractal sets have been constructed (see [22,4,6,7,24,26,11, $1,2,17]$ and references therein). Usually, the following two types of questions have been considered:
(Q1) When is a Borel probability measure μ spectral?
Until now, there are only a few classes of singular spectral measures that are known. It is still a basic problem to find more spectral measures.
(Q2) For a given spectral measure μ, can we find all the spectra of μ ?
It is quite challenging to characterize all the spectra of a given singular spectral measure μ (no example is known with this property). The first attempt of the classification of spectra was studied by Dutkay, Han and Sun [8]. They gave a complete characterization of the maximal orthogonal sets of the one-fourth standard Cantor measure (denoted by μ_{4}) by introducing a labeling tool on the infinite binary tree. They gave some sufficient conditions for a maximal orthogonal set to be a spectrum. Later, Dai, He and Lai [6] gave some sufficient conditions and necessary conditions for a maximal orthogonal set of μ_{4} to be a spectrum. Generally speaking, for a given singular spectral measure μ, there are two basic problems (call them spectral eigenvalue problems) as follows:

Case I. Let Λ be a spectrum of μ. Find all real numbers b such that $b \Lambda$ is also a spectrum of μ.
Case II. Find all real numbers b for which there exists a set Λ such that both Λ and $b \Lambda$ are spectra of μ.
Let an iterated function system (IFS) on \mathbb{R} of the form $f_{i}(x)=\frac{x}{p}+\frac{i}{q}, i=0,1, \ldots, q-1$ where $2 \leq q \in \mathbb{Z}$ and $p \in \mathbb{R}$. By Hutchinson's theorem [3,13,18], there exists a unique Borel probability measure $\mu_{p, q}$ with compact support $T_{p, q}$ satisfying that

$$
\begin{equation*}
\mu_{p, q}(E)=\sum_{i=0}^{q-1} \frac{1}{q} \mu_{p, q}\left(f_{i}^{-1}(E)\right) \tag{1.1}
\end{equation*}
$$

for any Borel set $E \subseteq \mathbb{R}$ and $T_{p, q}$ is the unique compact set satisfying that

$$
T_{p, q}=\bigcup_{i=0}^{q-1} f_{i}\left(T_{p, q}\right) .
$$

When $q=2, \mu_{p, q}$ becomes the standard Cantor measure of contraction ratio $\frac{1}{p}$ denoted by μ_{p}, i.e., the Bernoulli convolutions. For the $\mu_{p, q}$, there are some known results focused on the above two questions:

- $\mu_{p, q}$ is a spectral measure if and only if $\frac{p}{q} \in \mathbb{Z}[7]$. If $p=q$, the measure $\mu_{p, q}$ is the Lebesgue measure restricted to the interval $[0,1]$.
- Let b be a real number. If $p>q$ with $\frac{p}{q} \in \mathbb{Z}$, then

$$
b \in\left\{r \in \mathbb{R}: \text { there exists a set } \Lambda \text { such that both } \Lambda \text { and } r \Lambda \text { are spectra of } \mu_{p, q}\right\}
$$

if and only if $b=\frac{b_{1}}{b_{2}}$, where $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$ and b_{1}, b_{2} are coprime with q respectively [14].
The remaining relatively tractable situation is Case II of the above (Q2) for the measure $\mu_{p, q}$. The special cases are the Bernoulli convolution $\mu_{2 k}$ with $k \in \mathbb{Z}^{+}$, i.e., the set of all positive integers. It is known that the simplest spectrum for $\mu_{2 k}$ [22] is

$$
\Lambda_{2 k}=\left\{\sum_{j=0}^{n} a_{j}(2 k)^{j}: a_{j} \in\{0,1\}, n \in \mathbb{N}:=\{0,1,2, \ldots\}\right\}
$$

Later, Laba, Wang, Jorgensen, Dutkay and Li et al. investigated for what $b \in \mathbb{N}$, the scaling set $b \Lambda_{4}$ or $b \Lambda_{2 k}$ is also a spectrum of μ_{4}, or $\mu_{2 k}$ respectively [23,10,12,20,25]. In this paper, we will investigate those problems for the general case $\mu_{p, q}$.

https://daneshyari.com/en/article/8900228

Download Persian Version:

https://daneshyari.com/article/8900228

Daneshyari.com

[^0]: This work was supported by the National Natural Science Foundation of China 11271148.

 * Corresponding author.

 E-mail addresses: zhiyiwu@126.com (Z.-Y. Wu), zhumengsx86@163.com (M. Zhu).

