

Polynomial partition asymptotics

CrossMark

Alexander Dunn ${ }^{\mathrm{a}, *}$, Nicolas Robles ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{a}$ Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
b Wolfram Research Inc, 100 Trade Center Dr, Champaign, IL 61820, USA

A R T I C L E I N F O

Article history:
Received 1 May 2017
Available online 24 October 2017
Submitted by S. Cooper

Keywords:

Partitions
Hardy-Littlewood circle method
Polylogarithm

Abstract

Let $f \in \mathbb{Z}[y]$ be a polynomial such that $f(\mathbb{N}) \subseteq \mathbb{N}$, and let $p_{\mathcal{A}_{f}}(n)$ denote number of partitions of n whose parts lie in the set $\mathcal{A}_{f}:=\{f(n): n \in \mathbb{N}\}$. Under hypotheses on the roots of $f-f(0)$, we use the Hardy-Littlewood circle method, a polylogarithm identity, and the Matsumoto-Weng zeta function to derive asymptotic formulae for $p_{\mathcal{A}_{f}}(n)$ as n tends to infinity. This generalises asymptotic formulae for the number of partitions into perfect d th powers, established by Vaughan for $d=2$, and Gafni for the case $d \geq 2$, in 2015 and 2016 respectively.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

A partition of a positive integer n is a non-decreasing sequence of positive integers whose sum is n. Let $\mathcal{A} \subseteq \mathbb{N}$ and $p_{\mathcal{A}}(n)$ denote the number of partitions of n such that each part of the partition is restricted to be an element of \mathcal{A}. When $\mathcal{A}:=\mathbb{N}$, we obtain the well studied unrestricted partition function, usually denoted by $p(n)$. Let $f \in \mathbb{Z}[y]$ be a polynomial such that $f(\mathbb{N}) \subseteq \mathbb{N}$. Then we define $p_{\mathcal{A}_{f}}(n)$ to be the number of partitions of n whose parts lie in the set $\mathcal{A}_{f}:=\{f(n): n \in \mathbb{N}\}$. Under mild hypotheses on f, we derive an asymptotic formula for $p_{\mathcal{A}_{f}}(n)$ using the Hardy-Littlewood circle method and a fine analysis of the Matsumoto-Weng zeta function [5].

In 1918, Hardy and Ramanujan initiated the analytic study of $p(n)$ with the use of the celebrated Hardy-Littlewood circle method [4]. They proved

$$
p(n) \sim \frac{1}{4 \sqrt{3} n} e^{\pi \sqrt{2 n / 3}} \quad \text { as } \quad n \rightarrow \infty
$$

For fixed $k \geq 2$ they also conjectured an asymptotic formula for the restricted partition function $p_{\mathcal{A}_{k}}(n)$, where \mathcal{A}_{k} denotes the set of perfect k th powers. Later in 1934, Wright [15] provided proof for Hardy and

[^0]Ramanujan's conjectured formula concerning $p_{\mathcal{A}_{k}}(n)$. However, Wright's proof relied heavily on a transformation for the generating function for the sequence $\left\{p_{\mathcal{A}_{k}}(n)\right\}$ that involved generalised Bessel functions.

Vaughan has recently established a simplified asymptotic formula for $p_{\mathcal{A}_{k}}(n)$ in the case $k=2$ [14]. This was subsequently generalised for all $k \geq 2$ by Gafni [3]. Using the ideas from [14] and [3], Berndt, Malik, and Zaharescu in [2] have derived an asymptotic formula for restricted partitions in which each part is a k th power in an arithmetic progression. More precisely, for fixed $a_{0}, b_{0}, k \in \mathbb{N}$ with $\left(a_{0}, b_{0}\right)=1$, they give an asymptotic for $p_{\mathcal{A}_{k}\left(a_{0}, b_{0}\right)}(n)$, as n tends to infinity, where $\mathcal{A}_{k}\left(a_{0}, b_{0}\right):=\left\{m^{k}: m \equiv a_{0} \bmod b_{0}\right\}$. It is at the end of Berndt, Malik, and Zaharescu's paper [2] that they pose the question of establishing an asymptotic formula for $p_{\mathcal{A}_{f}}(n)$. To this end, we will follow the implementation of the circle method presented in $[2,3,14]$, with some key innovations. The first is a careful analysis of the Matsumoto-Weng zeta function and the application of a polylogarithm identity to extract the main terms of the asymptotic occurring in Theorem 1.1. For this see Lemma 2.2. The second key innovation is a generalisation of the classical major arc estimate for Waring's problem, see Lemma 2.3.

For other types of formulae for restricted partitions, we refer the reader to [8] and [9]. Interestingly, Vaughan has obtained an asymptotic formula for the number of partitions into primes [13].

We now introduce some notation and preliminaries that will allow us to state Theorem 1.1. Let $d \geq 2$ and suppose

$$
f(y):=\sum_{j=0}^{d} a_{j} y^{j} \in \mathbb{Z}[y]
$$

is fixed such that $\left(a_{0}, \ldots, a_{d}\right)=1$ and

$$
f(y)-a_{0}=a_{d} y \prod_{j=1}^{d-1}\left(y+\alpha_{j}\right)
$$

is such that $\alpha_{j} \in \mathbb{C} \backslash \mathbb{R}_{\leq-1}$. By convention, for $z \in \mathbb{C}$ we let $-\pi<\arg (z) \leq \pi$ and $\boldsymbol{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{d-1}, 0\right)$. Note that the greatest common divisor condition imposed above is important because it ensures there are no congruence obstructions to representing an integer n with a partition whose parts are values of f.

Evaluations of the Matsumoto-Weng zeta function at integers and residues of its poles naturally appear in our asymptotic formulae for $p_{\mathcal{A}_{f}}(n)$. We will provide some brief background on this function. Matsumoto and Weng [5] introduced the following r-tuple zeta function

$$
\begin{equation*}
\zeta_{r}\left(\left(s_{1}, \ldots, s_{r}\right) ;\left(\beta_{1}, \ldots, \beta_{r}\right)\right):=\sum_{n=1}^{\infty} \frac{1}{\left(n+\beta_{1}\right)^{s_{1}} \cdots\left(n+\beta_{r}\right)^{s_{r}}} \tag{1.1}
\end{equation*}
$$

where the $s_{j} \in \mathbb{C}$ are complex variables and $\beta_{j} \in \mathbb{C} \backslash \mathbb{R}_{\leq-1}$ for all $1 \leq j \leq r$. Here

$$
\left(n+\beta_{j}\right)^{s_{j}}=\exp \left(-s_{j} \log \left(n+\beta_{j}\right)\right)
$$

where the branch of the logarithm is fixed as $-\pi<\arg \left(n+\beta_{j}\right) \leq \pi$. This series is clearly well defined and absolutely convergent in the region,

$$
\operatorname{Re}\left(s_{1}+\cdots+s_{r}\right)>1
$$

By means of the classical Mellin-Barnes integral formula [5, Eqn. 4], $\zeta_{r}(\cdot, \boldsymbol{\beta})$ has meromorphic continuation to \mathbb{C}^{r} with respect to the variables s_{1}, \ldots, s_{r} when $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{r-1}, 0\right)$. One can see [5, Prop. 1] for more details. We will use the one-variable specialisation $s:=s_{1}=\cdots=s_{r}$ of (1.1), and its corresponding

https://daneshyari.com/en/article/8900235

Download Persian Version:

https://daneshyari.com/article/8900235

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ajdunn2@illinois.edu (A. Dunn), nirobles@illinois.edu, nicolasr@wolfram.com (N. Robles).

