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1. Introduction and preliminaries

A partition of a positive integer n is a non-decreasing sequence of positive integers whose sum is n. Let
A C N and p4(n) denote the number of partitions of n such that each part of the partition is restricted
to be an element of A. When A := N, we obtain the well studied unrestricted partition function, usually
denoted by p(n). Let f € Z[y] be a polynomial such that f(N) € N. Then we define p4,(n) to be the
number of partitions of n whose parts lie in the set Ay := {f(n) : n € N}. Under mild hypotheses on f, we
derive an asymptotic formula for p4,(n) using the Hardy-Littlewood circle method and a fine analysis of
the Matsumoto—Weng zeta function [5].

In 1918, Hardy and Ramanujan initiated the analytic study of p(n) with the use of the celebrated
Hardy-Littlewood circle method [4]. They proved

1 m\/2n/3
n)~-——-=e¢ as n — 0Q.
p(n) V3

For fixed k > 2 they also conjectured an asymptotic formula for the restricted partition function p.4, (n),
where A denotes the set of perfect kth powers. Later in 1934, Wright [15] provided proof for Hardy and
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Ramanujan’s conjectured formula concerning p 4, (n). However, Wright’s proof relied heavily on a transfor-
mation for the generating function for the sequence {p4,(n)} that involved generalised Bessel functions.

Vaughan has recently established a simplified asymptotic formula for p4, (n) in the case k = 2 [14]. This
was subsequently generalised for all £ > 2 by Gafni [3]. Using the ideas from [14] and [3], Berndt, Malik,
and Zaharescu in [2] have derived an asymptotic formula for restricted partitions in which each part is
a kth power in an arithmetic progression. More precisely, for fixed ag,bg, k € N with (ag,bp) = 1, they
give an asymptotic for p 4, (aq,50)(1), @s 1 tends to infinity, where A(ao, bo) := {mF : m = apmodby}. It
is at the end of Berndt, Malik, and Zaharescu’s paper [2] that they pose the question of establishing an
asymptotic formula for p 4, (n). To this end, we will follow the implementation of the circle method presented
in [2,3,14], with some key innovations. The first is a careful analysis of the Matsumoto-Weng zeta function
and the application of a polylogarithm identity to extract the main terms of the asymptotic occurring in
Theorem 1.1. For this see Lemma 2.2. The second key innovation is a generalisation of the classical major
arc estimate for Waring’s problem, see Lemma 2.3.

For other types of formulae for restricted partitions, we refer the reader to [8] and [9]. Interestingly,
Vaughan has obtained an asymptotic formula for the number of partitions into primes [13].

We now introduce some notation and preliminaries that will allow us to state Theorem 1.1. Let d > 2
and suppose

d
fly) = Z azy’ € Z[y|

is fixed such that (ag,...,aq) =1 and

d-1
f) —ao=aay [[ (v + o)
j=1
is such that a; € C\ R<_;. By convention, for z € C we let —7 < arg(z) < 7 and o := (av,...,04-1,0).

Note that the greatest common divisor condition imposed above is important because it ensures there are
no congruence obstructions to representing an integer n with a partition whose parts are values of f.

Evaluations of the Matsumoto—Weng zeta function at integers and residues of its poles naturally appear
in our asymptotic formulae for p4,(n). We will provide some brief background on this function. Matsumoto
and Weng [5] introduced the following r-tuple zeta function

= 1
CT” (Sla""sr);(ﬁlw"vﬁ'r) = (11)
( ) ; (n+51)51 ...(n-’-/BT)ST

where the s; € C are complex variables and 8; € C\R<_; for all 1 < j <r. Here

(n+ B;)% = exp(—s;log(n + 5;))

where the branch of the logarithm is fixed as —m < arg(n + ;) < 7. This series is clearly well defined and
absolutely convergent in the region,

Re(sy + -+ +s,) > 1.

By means of the classical Mellin—Barnes integral formula [5, Eqn. 4], (,.(-, 8) has meromorphic continuation
to C" with respect to the variables s1,...,s, when 8 = (f1,...,8-—1,0). One can see [5, Prop. 1] for
more details. We will use the one-variable specialisation s := s; = --+ = s, of (1.1), and its corresponding
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