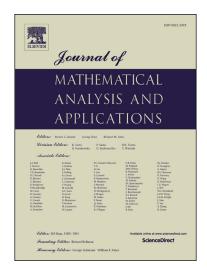
Accepted Manuscript

The stability of traveling wave solutions for a diffusive competition system of three species

Chueh-Hsin Chang


PII: S0022-247X(17)30911-3

DOI: https://doi.org/10.1016/j.jmaa.2017.10.013

Reference: YJMAA 21731

To appear in: Journal of Mathematical Analysis and Applications

Received date: 22 December 2015

Please cite this article in press as: C.-H. Chang, The stability of traveling wave solutions for a diffusive competition system of three species, *J. Math. Anal. Appl.* (2018), https://doi.org/10.1016/j.jmaa.2017.10.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The stability of traveling wave solutions for a diffusive competition system of three species[☆]

Chueh-Hsin Chang^{1,*}

^aDepartment of Applied Mathematics, Tunghai University, Taichung, Taiwan

Abstract

In this article, we investigate the stability of monotone traveling wave solutions for a diffusive three species competition system. By considering the initial perturbations of the traveling waves in some weighted function spaces, the monotone three-species waves become asymptotically stable. Further stability will be determined from the asymptotic behavior of the waves. This can be achieved by using the method of super- and subsolutions.

Keywords: Lotka-Volterra; competition-diffusion system; stability; traveling waves

2010 MSC: 35B35

1. Introduction

In this paper we consider the Lotka-Volterra competition-diffusion system

$$u_{i,t} = D_i u_{i,xx} + r_i u_i \left(1 - \sum_{j=1}^n b_{ij} u_j \right), \ x \in \mathbb{R}, t > 0, \ i = 1, ..., n,$$
 (1.1)

where D_i, r_i, b_{ij} (i, j = 1, ..., n) are positive constants. This system has attracted much attention in ecological and biological areas. Traveling wave solutions of (1.1) play an important role in the biological invasion of species. The previous works on traveling waves for two species (n = 2) can be found in [1], [2] and the reference therein. For the three species case (n = 3), due to the lack of maximum

^{*}Corresponding author Email address: changjuexin@thu.ntu.edu.tw(Chueh-Hsin Chang)

Download English Version:

https://daneshyari.com/en/article/8900248

Download Persian Version:

https://daneshyari.com/article/8900248

<u>Daneshyari.com</u>