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1. Introduction

As is well known the exponential functions {e27*<*#> : \ € Z?} form an Fourier basis for L?([0,1]%) and
it is now one of the fundamental pillars in modern mathematics. It is natural to ask what other measures
have this property, that there is a family of exponential functions which form an orthonormal basis for their
L2-space?
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In 1998, Jorgensen and Pedersen [16] made a surprising discovery: they constructed a fractal measure p
on a Cantor set which admits an orthonormal basis for L?(yx). This opened up a new field in researching
the orthogonal harmonic analysis of fractal measures including self-similar/self-affine measures and general
Moran measures. In [24], Strichartz proved the surprising result that the Fourier series for the Jorgensen—
Pedersen example have much better convergence properties than their classical counterparts on the unit
interval.

Definition 1.1. Let u be a compactly supported Borel probability measure on R. We say that u is a spectral
measure if there exists a countable set A of R such that E(A) := {€?™** : X € A} forms an orthonormal
basis for L?(u). In this case, A is called a spectrum of u and (u, A) is called a spectral pair.

Later on, more fractal spectral measures were constructed, even in higher dimensions [4-7,9,10,12,13,15,
17-21,23]. However, most of these fractal measures were generated by self-affine iterated function systems
(IFSs) [11]. In this paper, we will study measures generated by Moran IFSs (see Definition 1.2), which are
generalizations of self-affine TFSs.

Definition 1.2. Let {b,,}°2; be a sequence of integers with all b,, > 2 and let {D,,}>2; be a sequence of digit
sets with 0 € D,, C Z for each n > 1. We call the function system {f, 4(z) = b (z +d) : d € D,}52,
a Moran IFS.

If sup{z : « € b, 'D,,,n > 1} < oo, then there exists a Borel probability measure with compact support
defined by the convolution

H{bn}v{'Dn} = 6171_1'D1 * 6(b1b2)_1D2 oo )

where §, g = #LE ZaeE drq (#E is the cardinality of E) and 6, is the Dirac measure at ra, the sign * means
the convolution and the convergence is in weak sense. In this case, ) (p,} is called a Moran measure,
and its support is the Moran set

T=> (biby-+-bn) ' Dy = {Z(ble cobp) Yy i d, € Dpyn > 1}.

n=1 n=1

Moran sets and Moran measures appear frequently in dynamic systems, multifractal analysis and geometry
number theory (see [12]), etc. Until now, there are only a few results on the spectrality of Moran measures
[1-3,14].

The main question addressed in spectral measure theory is the following:

Question. When are the above Moran measures ji, . (p,} spectral?

The following is our partial answer to this question.

Theorem 1.3. Let {b,}5°, be a sequence of integers bigger than 1, and let {D,}>2 , be a sequence of digit
sets with Dy, = {0,7y,2rn, -+, (gn — D)rn} in Z. Then the associated Moran measure

’u{b'n}7{D"} = 5b;1D1 * 5(b1b2)71D2 Kok 6(b1b2'“bn)71Dn oo
is a spectral measure if rqp|by.

Corollary 1.4. Let {b,}22, be a sequence of integers bigger than 1, and let {D,,}32, be a sequence of digit
sets with D, = r{0,1,2,--- ,(gn, — 1)} in Z. Then the associated Moran measure
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