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A SUPPORT THEOREM FOR GENERALIZED CONVEXITY AND ITS
APPLICATIONS.

ANDRZEJ OLBRYŚ

Abstract. In the present paper we introduce a notion of (ω, t)-convexity as a natural generalization
of the notion of usual t-convexity, t-strongly convexity, approximate t-convexity, delta t-convexity and
many other. The main result of this paper establishes the necessary and sufficient conditions under
which an (ω, t)- convex map can be supported at a given point by an (ω, t)-affine support function.
Several applications of this support theorem are presented. For instance, new characterizations of inner
product spaces among normed spaces involving the notion of (ω, t)-convexity are given.

1. Introduction and terminology

Let t ∈ (0, 1) be a fixed number and let Q(t) be the smallest field containing the singleton {t}.
Throughout the whole paper (unless explicitly stated otherwise) X denotes a linear space over the field
K, where Q(t) ⊆ K ⊆ R and D stands for a non-empty t-convex set i.e.

tD + (1− t)D ⊆ D.

Now, for a given function ω : D×D× [0, 1] → R we introduce a notion of (ω, t)-convexity. A function
f : D → R is said to be:
(ω, t)-convex, if

f(tx+ (1− t)z) ≤ tf(x) + (1− t)f(z) + ω(x, z, t), x, z ∈ D,

(ω, t)-concave, if

tf(x) + (1− t)f(z) + ω(x, z, t) ≤ f(tx+ (1− t)z), x, z ∈ D.

If f is at the same time (ω, t)-convex and (ω, t)-concave then we say that it is an (ω, t)-affine. In this
case f satisfies the following functional equation

tf(x) + (1− t)f(z) + ω(x, z, t) = f(tx+ (1− t)z), x, z ∈ D.

If t = 1
2 then f is said to be ω-midpoint convex (ω-midpoint concave, ω-midpoint affine). If the above

inequalities are satisfied for all numbers t ∈ [0, 1] (where D stands for a convex set) then we say that f
is ω-convex (ω-concave, ω-affine, respectively).

The notion of ω-convexity is a common generalization of the notion of usual convexity, strong- con-
vexity, approximate-convexity, delta-convexity and many other. The term on the left-hand side of the
inequality is the same in all definitions while the right-hand side of all inequalities has different form.

Let (X, ‖ · ‖) be a real normed space, D be a convex subset of X and let c > 0. A function f : D → R

is called strongly t-convex (t ∈ (0, 1)) with modulus c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2,
for all x, y ∈ D. If the above inequality is satisfied with t = 1

2 then f is said to be strongly midpoint
convex function. If f is t-strongly convex function for all t ∈ [0, 1] then we say that it is strongly convex.
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