

Bounded point evaluations for rationally multicyclic subnormal operators

Liming Yang

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

A R T I C L E I N F O

Article history:
Received 26 May 2017
Available online xxxx
Submitted by R. Curto
Keywords:
Bounded point evaluation
Subnormal operator
Multicyclic

Abstract

Let S be a pure bounded rationally multicyclic subnormal operator on a separable complex Hilbert space \mathcal{H} and let M_{z} be the minimal normal extension on a separable complex Hilbert space \mathcal{K} containing \mathcal{H}. Let $\operatorname{bpe}(S)$ be the set of bounded point evaluations and let $\operatorname{abpe}(S)$ be the set of analytic bounded point evaluations. We show $\operatorname{abpe}(S)=b p e(S) \cap \operatorname{Int}(\sigma(S))$. The result affirmatively answers a question asked by J. B. Conway concerning the equality of the interior of $b p e(S)$ and $\operatorname{abpe}(S)$ for a rationally multicyclic subnormal operator S. As a result, if $\lambda_{0} \in \operatorname{Int}(\sigma(S))$ and $\operatorname{dim}\left(\operatorname{ker}\left(S-\lambda_{0}\right)^{*}\right)=N$, where N is the minimal number of cyclic vectors for S, then the range of $S-\lambda_{0}$ is closed, hence, $\lambda_{0} \in \sigma(S) \backslash \sigma_{e}(S)$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the space of bounded linear operators on \mathcal{H}. An operator $S \in \mathcal{L}(\mathcal{H})$ is subnormal if there exist a separable complex Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator $M_{z} \in \mathcal{L}(\mathcal{K})$ such that $M_{z} \mathcal{H} \subset \mathcal{H}$ and $S=\left.M_{z}\right|_{\mathcal{H}}$. By the spectral theorem of normal operators, we assume that

$$
\begin{equation*}
\mathcal{K}=\oplus_{i=1}^{m} L^{2}\left(\mu_{i}\right) \tag{1.1}
\end{equation*}
$$

where $\mu_{1} \gg \mu_{2} \gg \ldots \gg \mu_{m}(m$ may be $\infty)$ are compactly supported finite positive measures on the complex plane \mathbb{C}, and M_{z} is multiplication by z on \mathcal{K}. For $H=\left(h_{1}, \ldots, h_{m}\right) \in \mathcal{K}$ and $G=\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{K}$, we define

$$
\begin{equation*}
\langle H(z), G(z)\rangle=\sum_{i=1}^{m} h_{i}(z) \overline{g_{i}(z)} \frac{d \mu_{i}}{d \mu_{1}},|H(z)|^{2}=\langle H(z), H(z)\rangle . \tag{1.2}
\end{equation*}
$$

[^0]The inner product of H and G in \mathcal{K} is defined by

$$
\begin{equation*}
(H, G)=\int\langle H(z), G(z)\rangle d \mu_{1}(z) . \tag{1.3}
\end{equation*}
$$

M_{z} is the minimal normal extension if

$$
\begin{equation*}
\mathcal{K}=\operatorname{clos}\left(\operatorname{span}\left(M_{z}^{* k} x: x \in \mathcal{H}, k \geq 0\right)\right) . \tag{1.4}
\end{equation*}
$$

We will always assume that M_{z} is the minimal normal extension of S and \mathcal{K} satisfies (1.1) and (1.4). For details about the functional model above and basic knowledge of subnormal operators, the reader shall consult Chapter II of the book Conway [10].

For $T \in \mathcal{L}(\mathcal{H})$, we denote by $\sigma(T)$ the spectrum of $T, \sigma_{e}(T)$ the essential spectrum of T, T^{*} its adjoint, $\operatorname{ker}(T)$ its kernel, and $\operatorname{Ran}(T)$ its range. For a subset $A \subset \mathbb{C}$, we set $\operatorname{Int}(A)$ for its interior, \bar{A} or $\operatorname{clos}(A)$ for its closure, A^{c} for its complement, and χ_{A} for its characteristic function. Let $\delta_{i j}=1$ when $i=j$ and $\delta_{i j}=0$ when $i \neq j$. For $\lambda \in \mathbb{C}$ and $\delta>0$, we set $B(\lambda, \delta)=\{z:|z-\lambda|<\delta\}$ and $\mathbb{D}=B(0,1)$. Let \mathcal{P} denote the set of polynomials in the complex variable z. For a compact subset $K \subset \mathbb{C}$, let $\operatorname{Rat}(K)$ be the set of all rational functions with poles off K.

A subnormal operator S on \mathcal{H} is pure if for every non-zero invariant subspace I of $S(S I \subset I)$, the operator $\left.S\right|_{I}$ is not normal. For $F_{1}, F_{2}, \ldots, F_{N} \in \mathcal{H}$, let

$$
\begin{equation*}
R^{2}\left(S \mid F_{1}, F_{2}, \ldots, F_{N}\right)=\operatorname{clos}\left\{r_{1}(S) F_{1}+r_{2}(S) F_{2}+\ldots+r_{N}(S) F_{N}\right\} \tag{1.5}
\end{equation*}
$$

in \mathcal{H}, where $r_{1}, r_{2}, \ldots, r_{N} \in \operatorname{Rat}(\sigma(S))$ and let

$$
\begin{equation*}
P^{2}\left(S \mid F_{1}, F_{2}, \ldots, F_{N}\right)=\operatorname{clos}\left\{p_{1}(S) F_{1}+p_{2}(S) F_{2}+\ldots+p_{N}(S) F_{N}\right\} \tag{1.6}
\end{equation*}
$$

in \mathcal{H}, where $p_{1}, p_{2}, \ldots, p_{N} \in \mathcal{P}$. A subnormal operator S on \mathcal{H} is rationally multicyclic (N-cyclic) if there are N vectors $F_{1}, F_{2}, \ldots, F_{N} \in \mathcal{H}$ such that

$$
\mathcal{H}=R^{2}\left(S \mid F_{1}, F_{2}, \ldots, F_{N}\right)
$$

and for any $G_{1}, \ldots, G_{N-1} \in \mathcal{H}$,

$$
\mathcal{H} \neq R^{2}\left(S \mid G_{1}, G_{2}, \ldots, G_{N-1}\right)
$$

S is multicyclic (N-cyclic) if

$$
\mathcal{H}=P^{2}\left(S \mid F_{1}, F_{2}, \ldots, F_{N}\right)
$$

and for any $G_{1}, \ldots, G_{N-1} \in \mathcal{H}$,

$$
\mathcal{H} \neq P^{2}\left(S \mid G_{1}, G_{2}, \ldots, G_{N-1}\right)
$$

In this case, $m \leq N$ where m is as in (1.1).
Let μ be a compactly supported finite positive measure on the complex plane \mathbb{C} and let $\operatorname{spt}(\mu)$ denote the support of μ. For a compact subset K with $\operatorname{spt}(\mu) \subset K$, let $R^{2}(K, \mu)$ be the closure of $\operatorname{Rat}(K)$ in $L^{2}(\mu)$. Let $P^{2}(\mu)$ denote the closure of \mathcal{P} in $L^{2}(\mu)$.

If S is rationally cyclic, then S is unitarily equivalent to multiplication by z on $R^{2}\left(\sigma(S), \mu_{1}\right)$, where $m=1$ and $F_{1}=1$. We may write $R^{2}\left(S \mid F_{1}\right)=R^{2}\left(\sigma(S), \mu_{1}\right)$. If S is cyclic, then S is unitarily equivalent to multiplication by z on $P^{2}\left(\mu_{1}\right)$. We may write $P^{2}\left(S \mid F_{1}\right)=P^{2}\left(\mu_{1}\right)$.

https://daneshyari.com/en/article/8900266

Download Persian Version:

https://daneshyari.com/article/8900266

Daneshyari.com

[^0]: E-mail address: yliming@vt.edu.
 https://doi.org/10.1016/j.jmaa.2017.09.036
 0022-247X/© 2017 Elsevier Inc. All rights reserved.

