J. Math. Anal. Appl. ••• (••••) •••-••

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

JOURNAL OF
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

The state of the st

www.elsevier.com/locate/jmaa

Bounded point evaluations for rationally multicyclic subnormal operators

Liming Yang

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, IISA

ARTICLE INFO

Article history: Received 26 May 2017 Available online xxxx Submitted by R. Curto

Keywords: Bounded point evaluation Subnormal operator Multicyclic

ABSTRACT

Let S be a pure bounded rationally multicyclic subnormal operator on a separable complex Hilbert space \mathcal{H} and let M_z be the minimal normal extension on a separable complex Hilbert space \mathcal{K} containing \mathcal{H} . Let bpe(S) be the set of bounded point evaluations and let abpe(S) be the set of analytic bounded point evaluations. We show $abpe(S) = bpe(S) \cap Int(\sigma(S))$. The result affirmatively answers a question asked by J. B. Conway concerning the equality of the interior of bpe(S) and abpe(S) for a rationally multicyclic subnormal operator S. As a result, if $\lambda_0 \in Int(\sigma(S))$ and $dim(ker(S - \lambda_0)^*) = N$, where N is the minimal number of cyclic vectors for S, then the range of $S - \lambda_0$ is closed, hence, $\lambda_0 \in \sigma(S) \setminus \sigma_e(S)$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the space of bounded linear operators on \mathcal{H} . An operator $S \in \mathcal{L}(\mathcal{H})$ is subnormal if there exist a separable complex Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator $M_z \in \mathcal{L}(\mathcal{K})$ such that $M_z \mathcal{H} \subset \mathcal{H}$ and $S = M_z|_{\mathcal{H}}$. By the spectral theorem of normal operators, we assume that

$$\mathcal{K} = \bigoplus_{i=1}^{m} L^2(\mu_i) \tag{1.1}$$

where $\mu_1 >> \mu_2 >> ... >> \mu_m$ (m may be ∞) are compactly supported finite positive measures on the complex plane \mathbb{C} , and M_z is multiplication by z on \mathcal{K} . For $H = (h_1, ..., h_m) \in \mathcal{K}$ and $G = (g_1, ..., g_m) \in \mathcal{K}$, we define

$$\langle H(z), G(z) \rangle = \sum_{i=1}^{m} h_i(z) \overline{g_i(z)} \frac{d\mu_i}{d\mu_1}, \ |H(z)|^2 = \langle H(z), H(z) \rangle. \tag{1.2}$$

E-mail address: yliming@vt.edu.

 $\begin{array}{l} \rm https://doi.org/10.1016/j.jmaa.2017.09.036\\ 0022-247X/@~2017~Elsevier~Inc.~All~rights~reserved. \end{array}$

The inner product of H and G in K is defined by

$$(H,G) = \int \langle H(z), G(z) \rangle d\mu_1(z). \tag{1.3}$$

 M_z is the minimal normal extension if

$$\mathcal{K} = clos\left(span(M_z^{*k}x: x \in \mathcal{H}, k \ge 0)\right). \tag{1.4}$$

We will always assume that M_z is the minimal normal extension of S and K satisfies (1.1) and (1.4). For details about the functional model above and basic knowledge of subnormal operators, the reader shall consult Chapter II of the book Conway [10].

For $T \in \mathcal{L}(\mathcal{H})$, we denote by $\sigma(T)$ the spectrum of T, $\sigma_e(T)$ the essential spectrum of T, T^* its adjoint, ker(T) its kernel, and Ran(T) its range. For a subset $A \subset \mathbb{C}$, we set Int(A) for its interior, \bar{A} or clos(A) for its closure, A^c for its complement, and χ_A for its characteristic function. Let $\delta_{ij} = 1$ when i = j and $\delta_{ij} = 0$ when $i \neq j$. For $\lambda \in \mathbb{C}$ and $\delta > 0$, we set $B(\lambda, \delta) = \{z : |z - \lambda| < \delta\}$ and $\mathbb{D} = B(0, 1)$. Let \mathcal{P} denote the set of polynomials in the complex variable z. For a compact subset $K \subset \mathbb{C}$, let Rat(K) be the set of all rational functions with poles off K.

A subnormal operator S on \mathcal{H} is pure if for every non-zero invariant subspace I of S ($SI \subset I$), the operator $S|_I$ is not normal. For $F_1, F_2, ..., F_N \in \mathcal{H}$, let

$$R^{2}(S|F_{1}, F_{2}, ..., F_{N}) = clos\{r_{1}(S)F_{1} + r_{2}(S)F_{2} + ... + r_{N}(S)F_{N}\}$$

$$(1.5)$$

in \mathcal{H} , where $r_1, r_2, ..., r_N \in Rat(\sigma(S))$ and let

$$P^{2}(S|F_{1}, F_{2}, ..., F_{N}) = clos\{p_{1}(S)F_{1} + p_{2}(S)F_{2} + ... + p_{N}(S)F_{N}\}$$

$$(1.6)$$

in \mathcal{H} , where $p_1, p_2, ..., p_N \in \mathcal{P}$. A subnormal operator S on \mathcal{H} is rationally multicyclic (N-cyclic) if there are N vectors $F_1, F_2, ..., F_N \in \mathcal{H}$ such that

$$\mathcal{H} = R^2(S|F_1, F_2, ..., F_N)$$

and for any $G_1, ..., G_{N-1} \in \mathcal{H}$,

$$\mathcal{H} \neq R^2(S|G_1, G_2, ..., G_{N-1}).$$

S is multicyclic (N-cyclic) if

$$\mathcal{H} = P^2(S|F_1, F_2, ..., F_N)$$

and for any $G_1, ..., G_{N-1} \in \mathcal{H}$,

$$\mathcal{H} \neq P^2(S|G_1, G_2, ..., G_{N-1}).$$

In this case, $m \leq N$ where m is as in (1.1).

Let μ be a compactly supported finite positive measure on the complex plane $\mathbb C$ and let $spt(\mu)$ denote the support of μ . For a compact subset K with $spt(\mu) \subset K$, let $R^2(K,\mu)$ be the closure of Rat(K) in $L^2(\mu)$. Let $P^2(\mu)$ denote the closure of $\mathcal P$ in $L^2(\mu)$.

If S is rationally cyclic, then S is unitarily equivalent to multiplication by z on $R^2(\sigma(S), \mu_1)$, where m = 1 and $F_1 = 1$. We may write $R^2(S|F_1) = R^2(\sigma(S), \mu_1)$. If S is cyclic, then S is unitarily equivalent to multiplication by z on $P^2(\mu_1)$. We may write $P^2(S|F_1) = P^2(\mu_1)$.

Please cite this article in press as: L. Yang, Bounded point evaluations for rationally multicyclic subnormal operators, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2017.09.036

2

Download English Version:

https://daneshyari.com/en/article/8900266

Download Persian Version:

https://daneshyari.com/article/8900266

<u>Daneshyari.com</u>